## CS 473: Fundamental Algorithms

Sariel Har-Peled, Alexandra Kolla sariel@illinois.edu, akolla@illinois.edu, 3306 SC, 3222 SC

University of Illinois, Urbana-Champaign

Spring 2013

# Administrivia, Introduction, Graph basics and DFS

Lecture 1
January 15, 2013

## The word "algorithm" comes from...

Muhammad ibn Musa al-Khwarizmi 780-850 AD The word "algebra" is taken from the title of one of his books.

## Part I

## Administrivia

#### Instructional Staff

- Instructor:
  - Sariel Har-Peled (sariel)
  - Alexandra Kolla (akolla)
- Teaching Assistants:
  - Danyal Khashabi (khashab2)
  - Madan Vivek (vmadan2)
  - Hai Wang (hwang202)
  - Subhro Roy (sroy9)
- Office hours: See course webpage
- Email: See course webpage

#### Online resources

- Webpage: courses.engr.illinois.edu/cs473/sp2013/ General information, homeworks, etc.
- Moodle: https://learn.illinois.edu/course/view.php?id=1647 Quizzes, solutions to homeworks.
- Online questions/announcements: Piazza https://piazza.com/#spring2013/cs473 Online discussions, etc.

#### **Textbooks**

- Prerequisites: CS 173 (discrete math), CS 225 (data structures) and CS 373 (theory of computation)
- Recommended books:
  - Algorithms by Dasgupta, Papadimitriou & Vazirani. Available online for free!
  - Algorithm Design by Kleinberg & Tardos
- Lecture notes: Available on the web-page after every class.
- Additional References
  - Previous class notes of Jeff Erickson, Sariel HarPeled and the instructor.
  - Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
  - 3 Computers and Intractability: Garey and Johnson.

### Prerequisites

Asymptotic notation:  $O(), \Omega(), o()$ .

Discrete Structures: sets, functions, relations, equivalence classes, partial orders, trees, graphs

Logic: predicate logic, boolean algebra

Proofs: by induction, by contradiction

Basic sums and recurrences: sum of a geometric series, unrolling of recurrences, basic calculus

Data Structures: arrays, multi-dimensional arrays, linked lists, trees, balanced search trees, heaps

Abstract Data Types: lists, stacks, queues, dictionaries, priority queues

Algorithms: sorting (merge, quick, insertion), pre/post/in order traversal of trees, depth/breadth first search of trees (maybe graphs)

Basic analysis of algorithms: loops and nested loops, deriving recurrences from a recursive program

🔟 Concepts from Theory of Computation: languages, automata, Turing machine, undecidability, non-determinism

Programming: in some general purpose language

Elementary Discrete Probability: event, random variable, independence

Mathematical maturity

## Grading Policy: Overview

- Attendance/clickers: 5%
- Quizzes: 5%
- Homeworks: 20%
- Midterms: 40% (2 × 20%)
- Finals: 30% (covers the full course content)

9

#### Homeworks

- One quiz every week: Due by midnight on Sunday.
- One homework every week: Assigned on Tuesday and due the following Monday at noon.
- Submit online only!
- Homeworks can be worked on in groups of up to 3 and each group submits one written solution (except Homework 0).
  - Short quiz-style questions to be answered individually on Moodle.
- Groups can be changed a few times only
- Unlike previous years no oral homework this semester due to large enrollment.

#### More on Homeworks

- No extensions or late homeworks accepted.
- To compensate, the homework with the least score will be dropped in calculating the homework average.
- Important: Read homework faq/instructions on website.

#### Discussion Sessions

- 50min problem solving session led by TAs
- Four sections all in SC 1214.
  - Tuesday

5-5:50pm,

6-6:50pm.

Wednesday

4-4:50pm,

5-5:50pm.

#### Advice

- Attend lectures, please ask plenty of questions.
- Clickers...
- 3 Attend discussion sessions.
- On't skip homework and don't copy homework solutions.
- Study regularly and keep up with the course.
- Ask for help promptly. Make use of office hours.

#### Homeworks

- HW 0 is posted on the class website. Quiz 0 available
- Quiz 0 due by Sunday Jan 20 midnight HW 0 due on Monday January 21 noon.
- Online submission.
- HW 0 to be submitted in individually. f

14

Spring 2013

#### Part II

## Course Goals and Overview

## **Topics**

- Some fundamental algorithms
- Broadly applicable techniques in algorithm design
  - Understanding problem structure
  - Brute force enumeration and backtrack search
  - Reductions
  - Recursion
    - Oivide and Conquer
    - Opening Programming
  - Greedy methods
  - Network Flows and Linear/Integer Programming (optional)
- Analysis techniques
  - Correctness of algorithms via induction and other methods
  - Recurrences
  - 3 Amortization and elementary potential functions
- Polynomial-time Reductions, NP-Completeness, Heuristics

# Algorithmic thinking

- Learn/remember some basic tricks, algorithms, problems, ideas
- Understand/appreciate limits of computation (intractability)
- Appreciate the importance of algorithms in computer science and beyond (engineering, mathematics, natural sciences, social sciences, ...)
- 6 Have fun!!!

## Algorithmic thinking

- Learn/remember some basic tricks, algorithms, problems, ideas
- Understand/appreciate limits of computation (intractability)
- Appreciate the importance of algorithms in computer science and beyond (engineering, mathematics, natural sciences, social sciences, ...)
- Have fun!!!

#### Part III

# Some Algorithmic Problems in the Real World

### Shortest Paths



#### Shortest Paths - Paris to Berlin



## Digital Information: Compression and Coding

Compression: reduce size for storage and transmission Coding: add redundancy to protect against errors in storage and transmission

Efficient algorithms for compression/coding and decompressing/decoding part of most modern gadgets (computers, phones, music/video players ...)

## Search and Indexing

String Matching and Link Analysis

- Web search: Google, Yahoo!, Microsoft, Ask, ...
- 2 Text search: Text editors (Emacs, Word, Browsers, ...)
- Regular expression search: grep, egrep, emacs, Perl, Awk, compilers

## Public-Key Cryptography

Foundation of Electronic Commerce

RSA Crypto-system: generate key  $\mathbf{n} = \mathbf{p}\mathbf{q}$  where  $\mathbf{p}, \mathbf{q}$  are primes

**Primality:** Given a number N, check if N is a prime or composite.

Factoring: Given a composite number  $\mathbf{N}$ , find a non-trivial factor

## Public-Key Cryptography

Foundation of Electronic Commerce

RSA Crypto-system: generate key  $\mathbf{n} = \mathbf{pq}$  where  $\mathbf{p}, \mathbf{q}$  are primes

**Primality:** Given a number N, check if N is a prime or composite.

**Factoring:** Given a composite number N, find a non-trivial factor

## Programming: Parsing and Debugging

[godavari: /temp/test] chekuri % gcc main.c

Parsing: Is main.c a syntactically valid C program?

**Debugging:** Will main.c go into an infinite loop on some input?

Easier problem ??? Will main.c halt on the specific input 10?

## Optimization

Find the cheapest of most profitable way to do things

- Airline schedules AA, Delta, ...
- Vehicle routing trucking and transportation (UPS, FedEx, Union Pacific, ...)
- Network Design AT&T, Sprint, Level3 ...

Linear and Integer programming problems

## Part IV

## Algorithm Design

## Important Ingredients in Algorithm Design

- What is the problem (really)?
  - What is the input? How is it represented?
  - What is the output?
- What is the model of computation? What basic operations are allowed?
- Algorithm design
- Analysis of correctness, running time, space etc.
- Algorithmic engineering: evaluating and understanding of algorithm's performance in practice, performance tweaks, comparison with other algorithms etc. (Not covered in this course)

#### **Problem**

Given an integer N > 0, is N a prime?

#### SimpleAlgorithm:

```
for i = 2 to [√N] do
    if i divides N then
       return ''COMPOSITE''
return ''PRIME''
```

#### Problem

Given an integer N > 0, is N a prime?

#### SimpleAlgorithm:

```
for i = 2 to \lfloor \sqrt{N} \rfloor do
if i divides N then
return ''COMPOSITE','
return ''PRIME','
```

#### Problem

Given an integer N > 0, is N a prime?

#### SimpleAlgorithm:

```
for i = 2 to [√N] do
   if i divides N then
      return ''COMPOSITE''
return ''PRIME''
```

#### **Problem**

Given an integer N > 0, is N a prime?

#### SimpleAlgorithm:

```
for i = 2 to [√N] do
   if i divides N then
      return ''COMPOSITE''
return ''PRIME''
```

#### **Problem**

Given an integer N > 0, is N a prime?

#### SimpleAlgorithm:

```
for i = 2 to \lfloor \sqrt{N} \rfloor do
   if i divides N then
    return ''COMPOSITE''
return ''PRIME''
```

#### **Problem**

Given an integer N > 0, is N a prime?

#### SimpleAlgorithm:

```
for i = 2 to [√N] do
   if i divides N then
     return ''COMPOSITE''
return ''PRIME''
```

#### **Problem**

Given an integer N > 0, is N a prime?

#### SimpleAlgorithm:

```
for i = 2 to [√N] do
   if i divides N then
      return ''COMPOSITE''
return ''PRIME''
```

# Primality testing

...Polynomial means... in input size

### How many bits to represent N in binary? $\lceil log N \rceil$ bits.

Simple Algorithm takes  $\sqrt{N} = 2^{(\log N)/2}$  time. Exponential in the input size  $n = \log N$ .

- Modern cryptography: binary numbers with 128, 256, 512 bits.
- 2 Simple Algorithm will take 2<sup>64</sup>, 2<sup>128</sup>, 2<sup>256</sup> steps!
- Fastest computer today about 3 petaFlops/sec:  $3 \times 2^{50}$  floating point ops/sec.

#### Lesson:

Pay attention to representation size in analyzing efficiency of algorithms. Especially in *number* problems.

# Primality testing

...Polynomial means... in input size

How many bits to represent N in binary?  $\lceil log N \rceil$  bits. Simple Algorithm takes  $\sqrt{N} = 2^{(log N)/2}$  time. Exponential in the input size n = log N.

- Modern cryptography: binary numbers with 128, 256, 512 bits.
- 2 Simple Algorithm will take 2<sup>64</sup>, 2<sup>128</sup>, 2<sup>256</sup> steps!
- **③** Fastest computer today about 3 petaFlops/sec:  $3 \times 2^{50}$  floating point ops/sec.

#### Lesson:

Pay attention to representation size in analyzing efficiency of algorithms. Especially in *number* problems.

So, is there an *efficient/good/effective* algorithm for primality?

### Question

What does efficiency mean?

 $O(n), O(n \log n), O(n^2), O(n^3), O(n^{100}), \dots$  where n is size of the input

Why? Is n<sup>100</sup> really efficient/practical? Etc.

So, is there an *efficient/good/effective* algorithm for primality?

### Question:

What does efficiency mean?

In this class efficiency is broadly equated to polynomial time. O(n),  $O(n \log n)$ ,  $O(n^2)$ ,  $O(n^3)$ ,  $O(n^{100})$ , ... where n is size of the input.

Why? Is n<sup>100</sup> really efficient/practical? Etc.

So, is there an *efficient/good/effective* algorithm for primality?

### Question:

What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.  $O(n), O(n \log n), O(n^2), O(n^3), O(n^{100}), \ldots$  where n is size of the input.

Why? Is **n**<sup>100</sup> really efficient/practical? Etc.

So, is there an *efficient/good/effective* algorithm for primality?

### Question:

What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.  $O(n), O(n \log n), O(n^2), O(n^3), O(n^{100}), \ldots$  where n is size of the input.

Why? Is n<sup>100</sup> really efficient/practical? Etc.

So, is there an *efficient/good/effective* algorithm for primality?

### Question:

What does efficiency mean?

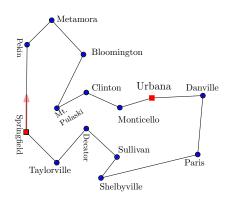
In this class efficiency is broadly equated to polynomial time.

 $O(n), O(n \log n), O(n^2), O(n^3), O(n^{100}), \ldots$  where n is size of the input.

Why? Is n<sup>100</sup> really efficient/practical? Etc.

# $\operatorname{TSP}$ problem

#### Lincoln's tour



- Circuit court ride through counties staying a few days in each town.
- Lincoln was a lawyer traveling with the Eighth Judicial Circuit.
- Picture: travel during 1850.
  - Very close to optimal tour.
  - Might have been optimal at the time..

# Solving $\operatorname{TSP}$ by a Computer

Is it hard?

- $\mathbf{0}$   $\mathbf{n}$  = number of cities.
- n<sup>2</sup>: size of input.
- Number of possible solutions is

$$n * (n - 1) * (n - 2) * ... * 2 * 1 = n!.$$

n! grows very quickly as n grows.

n = 10:  $n! \approx 3628800$  n = 50:  $n! \approx 3 * 10^{64}$ n = 100:  $n! \approx 9 * 10^{157}$ 

# Solving TSP by a Computer

Fastest computer...

Fastest super computer can do (roughly)

$$2.5 * 10^{15}$$

operations a second.

- ② Assume: computer checks  $2.5*10^{15}$  solutions every second, then...
  - $\mathbf{0} \quad \mathbf{n} = \mathbf{20} \implies 2 \text{ hours.}$
  - $\mathbf{0} \quad \mathbf{n} = \mathbf{25} \implies 200 \text{ years.}$
  - **3**  $n = 37 \implies 2 * 10^{20} \text{ years!!!}$

# What is a good algorithm?

Running time...

| Input size      | n <sup>2</sup> ops | n³ ops        | n <sup>4</sup> ops            | n! ops                           |
|-----------------|--------------------|---------------|-------------------------------|----------------------------------|
| 5               | 0 secs             | 0 secs        | 0 secs                        | 0 secs                           |
| 20              | 0 secs             | 0 secs        | 0 secs                        | 16 mins                          |
| 30              | 0 secs             | 0 secs        | 0 secs                        | <b>3 ⋅ 10</b> <sup>9</sup> years |
| 100             | 0 secs             | 0 secs        | 0 secs                        | never                            |
| 8000            | 0 secs             | 0 secs        | 1 secs                        | never                            |
| 16000           | 0 secs             | 0 secs        | 26 secs                       | never                            |
| 32000           | 0 secs             | 0 secs        | 6 mins                        | never                            |
| 64000           | 0 secs             | 0 secs        | 111 mins                      | never                            |
| 200,000         | 0 secs             | 3 secs        | 7 days                        | never                            |
| 2,000,000       | 0 secs             | 53 mins       | 202.943 years                 | never                            |
| 10 <sup>8</sup> | 4 secs             | 12.6839 years | 10 <sup>9</sup> years         | never                            |
| 10 <sup>9</sup> | 6 mins             | 12683.9 years | <b>10</b> <sup>13</sup> years | never                            |

### What is a good algorithm?

Running time...

ALL RIGHTS RESERVED http://www.cartoonbank.com



"No, Thursday's out. How about never-is never good for you?"

### Primes is in P!

### Theorem (Agrawal-Kayal-Saxena'02)

There is a polynomial time algorithm for primality.

First polynomial time algorithm for testing primality. Running time is  $O(log^{12} N)$  further improved to about  $O(log^6 N)$  by others. In terms of input size n = log N, time is  $O(n^6)$ .

Breakthrough announced in August 2002. Three days later announced in New York Times. Only 9 pages!

Neeraj Kayal and Nitin Saxena were undergraduates at IIT-Kanpur!

### What about before 2002?

Primality testing a key part of cryptography. What was the algorithm being used before 2002?

Miller-Rabin randomized algorithm:

- runs in polynomial time: O(log³ N) time
- if N is prime correctly says "yes".
- if is composite it says "yes" with probability at most  $1/2^{100}$  (can be reduced further at the expense of more running time).

Based on Fermat's little theorem and some basic number theory.

### Factoring

- Modern public-key cryptography based on RSA (Rivest-Shamir-Adelman) system.
- Relies on the difficulty of factoring a composite number into its prime factors.
- There is a polynomial time algorithm that decides whether a given number N is prime or not (hence composite or not) but no known polynomial time algorithm to factor a given number.

### Lessor

Intractability can be useful!

### Factoring

- Modern public-key cryptography based on RSA (Rivest-Shamir-Adelman) system.
- Relies on the difficulty of factoring a composite number into its prime factors.
- There is a polynomial time algorithm that decides whether a given number N is prime or not (hence composite or not) but no known polynomial time algorithm to factor a given number.

### Lesson

Intractability can be useful!

### Digression: decision, search and optimization

Three variants of problems.

- Decision problem: answer is yes or no.
  Example: Given integer N, is it a composite number?
- Search problem: answer is a feasible solution if it exists. Example: Given integer N, if N is composite output a non-trivial factor p of N.
- Optimization problem: answer is the best feasible solution (if one exists).

**Example:** Given integer N, if N is composite output the *smallest* non-trivial factor p of N.

For a given underlying problem:

Optimization  $\geq$  Search  $\geq$  Decision

### Digression: decision, search and optimization

Three variants of problems.

- Decision problem: answer is yes or no.
  Example: Given integer N, is it a composite number?
- Search problem: answer is a feasible solution if it exists. Example: Given integer N, if N is composite output a non-trivial factor p of N.
- Optimization problem: answer is the best feasible solution (if one exists).

**Example:** Given integer **N**, if **N** is composite output the *smallest* non-trivial factor **p** of **N**.

For a given underlying problem:

Optimization  $\geq$  Search  $\geq$  Decision

# Quantum Computing

### Theorem (Shor'1994)

There is a polynomial time algorithm for factoring on a quantum computer.

RSA and current commercial cryptographic systems can be broken if a quantum computer can be built!

#### Lesson

Pay attention to the model of computation.

# Quantum Computing

### Theorem (Shor'1994)

There is a polynomial time algorithm for factoring on a quantum computer.

RSA and current commercial cryptographic systems can be broken if a quantum computer can be built!

#### Lesson

Pay attention to the model of computation.

### Problems and Algorithms

Many many different problems.

- Adding two numbers: efficient and simple algorithm
- Sorting: efficient and not too difficult to design algorithm
- Primality testing: simple and basic problem, took a long time to find efficient algorithm
- Factoring: no efficient algorithm known.
- Malting problem: important problem in practice, undecidable!

41

### Multiplying Numbers

Problem Given two **n**-digit numbers **x** and **y**, compute their product.

### **Grade School Multiplication**

Compute "partial product" by multiplying each digit of  ${\bf y}$  with  ${\bf x}$  and adding the partial products.

 $\begin{array}{r}
 3141 \\
 \times 2718 \\
 \hline
 25128 \\
 3141 \\
 21987 \\
 \underline{6282} \\
 8537238$ 

### Time analysis of grade school multiplication

- Each partial product:  $\Theta(n)$  time
- ② Number of partial products:  $\leq n$
- **3** Adding partial products:  $\mathbf{n}$  additions each  $\Theta(\mathbf{n})$  (Why?)
- Total time:  $\Theta(n^2)$
- Is there a faster way?

43

### Fast Multiplication

Best known algorithm:  $O(n \log n \cdot 2^{O(\log^* n)})$  time [Furer 2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen 1971]

**Conjecture:** there exists and  $O(n \log n)$  time algorithm

We don't fully understand multiplication! Computation and algorithm design is non-triv

### Fast Multiplication

Best known algorithm:  $O(n \log n \cdot 2^{O(\log^* n)})$  time [Furer 2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen 1971]

Conjecture: there exists and  $O(n \log n)$  time algorithm

We don't fully understand multiplication! Computation and algorithm design is non-trivial!

### Course Approach

Algorithm design requires a mix of skill, experience, mathematical background/maturity and ingenuity.

Approach in this class and many others:

- Improve skills by showing various tools in the abstract and with concrete examples
- Improve experience by giving many problems to solve
- Motivate and inspire
- Creativity: you are on your own!

### What model of computation do we use?

Turing Machine?

46

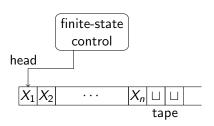
### What model of computation do we use?

Turing Machine?

46

## Turing Machines: Recap

- Infinite tape
- Finite state control
- Input at beginning of tape
- Special tape letter "blank" □
- Head can move only one cell to left or right



## Turing Machines

- Basic unit of data is a bit (or a single character from a finite alphabet)
- Algorithm is the finite control
- Time is number of steps/head moves

#### **Pros and Cons:**

- theoretically sound, robust and simple model that underpins computational complexity.
- 2 polynomial time equivalent to any reasonable "real" computer: Church-Turing thesis
- too low-level and cumbersome, does not model actual computers for many realistic settings

### Turing Machines

- Basic unit of data is a bit (or a single character from a finite alphabet)
- Algorithm is the finite control
- Time is number of steps/head moves

#### **Pros and Cons:**

- theoretically sound, robust and simple model that underpins computational complexity.
- opolynomial time equivalent to any reasonable "real" computer: Church-Turing thesis
- too low-level and cumbersome, does not model actual computers for many realistic settings

### How do "real" computers differ from TMs?

- random access to memory
- 2 pointers
- arithmetic operations (addition, subtraction, multiplication, division) in constant time

- basic data type is a word: currently 64 bits
- arithmetic on words are basic instructions of computer
- $\odot$  memory requirements assumed to be  $\leq 2^{64}$  which allows for pointers and indirect addressing as well as random access

How do "real" computers differ from TMs?

- random access to memory
- pointers
- arithmetic operations (addition, subtraction, multiplication, division) in constant time

- 1 basic data type is a word: currently 64 bits
- arithmetic on words are basic instructions of computer
- $\odot$  memory requirements assumed to be  $\leq 2^{64}$  which allows for pointers and indirect addressing as well as random access

How do "real" computers differ from TMs?

- 1 random access to memory
- pointers
- arithmetic operations (addition, subtraction, multiplication, division) in constant time

- basic data type is a word: currently 64 bits
- arithmetic on words are basic instructions of computer
- $^{\odot}$  memory requirements assumed to be  $\leq 2^{64}$  which allows for pointers and indirect addressing as well as random access

How do "real" computers differ from TMs?

- random access to memory
- pointers
- arithmetic operations (addition, subtraction, multiplication, division) in constant time

- basic data type is a word: currently 64 bits
- arithmetic on words are basic instructions of computer
- $\odot$  memory requirements assumed to be  $\le 2^{64}$  which allows for pointers and indirect addressing as well as random access

### Unit-Cost RAM Model

#### Informal description:

- Basic data type is an integer/floating point number
- Numbers in input fit in a word
- 3 Arithmetic/comparison operations on words take constant time
- Arrays allow random access (constant time to access A[i])
- Onter based data structures via storing addresses in a word

## Example

Sorting: input is an array of  $\mathbf{n}$  numbers

- input size is n (ignore the bits in each number),
- random access to array elements,
- addition of indices takes constant time,
- basic arithmetic operations take constant time,
- reading/writing one word from/to memory takes constant time.

We will usually not allow (or be careful about allowing):

- bitwise operations (and, or, xor, shift, etc).
- floor function.
- Iimit word size (usually assume unbounded word size).

#### Caveats of RAM Model

Unit-Cost RAM model is applicable in wide variety of settings in practice. However it is not a proper model in several important situations so one has to be careful.

- For some problems such as basic arithmetic computation, unit-cost model makes no sense. Examples: multiplication of two n-digit numbers, primality etc.
- ② Input data is very large and does not satisfy the assumptions that individual numbers fit into a word or that total memory is bounded by  $2^k$  where k is word length.
- Assumptions valid only for certain type of algorithms that do not create large numbers from initial data. For example, exponentiation creates very big numbers from initial numbers.

#### Models used in class

#### In this course:

- Assume unit-cost RAM by default.
- We will explicitly point out where unit-cost RAM is not applicable for the problem at hand.

Spring 2013

# Part V

# **Graph Basics**

# Why Graphs?

- Graphs help model networks which are ubiquitous: transportation networks (rail, roads, airways), social networks (interpersonal relationships), information networks (web page links) etc etc.
- Fundamental objects in Computer Science, Optimization, Combinatorics
- Many important and useful optimization problems are graph problems
- Graph theory: elegant, fun and deep mathematics

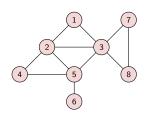
# Graph

#### **Definition**

An undirected (simple) graph

$$G = (V, E)$$
 is a 2-tuple:

- V is a set of vertices (also referred to as nodes/points)
- ② E is a set of edges where each edge e ∈ E is a set of the form {u, v} with u, v ∈ V and u ≠ v.



#### Example

In figure, G=(V,E) where  $V=\{1,2,3,4,5,6,7,8\}$  and  $E=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\},\{3,8\},\{4,5\},\{5,6\},\{7,8\}\}.$ 

#### Notation and Convention

#### **Notation**

An edge in an undirected graphs is an *unordered* pair of nodes and hence it is a set. Conventionally we use (u, v) for  $\{u, v\}$  when it is clear from the context that the graph is undirected.

- u and v are the end points of an edge {u, v}
- Multi-graphs allow
  - loops which are edges with the same node appearing as both end points
  - multi-edges: different edges between same pairs of nodes
- In this class we will assume that a graph is a simple graph unless explicitly stated otherwise.

# Graph Representation I

#### Adjacency Matrix

Represent G = (V, E) with n vertices and m edges using a  $n \times n$  adjacency matrix A where

- $\textbf{A}[i,j] = \textbf{A}[j,i] = \textbf{1} \text{ if } \{i,j\} \in \textbf{E} \text{ and } \textbf{A}[i,j] = \textbf{A}[j,i] = \textbf{0} \text{ if } \{i,j\} \not\in \textbf{E}.$
- ② Advantage: can check if  $\{i,j\} \in E$  in O(1) time
- ${\color{blue} \bullet}$  Disadvantage: needs  $\Omega(n^2)$  space even when  $m \ll n^2$

## Graph Representation II

### Adjacency Lists

Represent G = (V, E) with n vertices and m edges using adjacency lists:

- For each  $\mathbf{u} \in \mathbf{V}$ ,  $\mathrm{Adj}(\mathbf{u}) = \{\mathbf{v} \mid \{\mathbf{u}, \mathbf{v}\} \in \mathbf{E}\}$ , that is neighbors of  $\mathbf{u}$ . Sometimes  $\mathrm{Adj}(\mathbf{u})$  is the list of edges incident to  $\mathbf{u}$ .
- ② Advantage: space is O(m + n)
- ① Disadvantage: cannot "easily" determine in O(1) time whether  $\{i,j\} \in E$ 
  - By sorting each list, one can achieve  $O(\log n)$  time
  - 2 By hashing "appropriately", one can achieve O(1) time

**Note:** In this class we will assume that by default, graphs are represented using plain vanilla (unsorted) adjacency lists.

## Connectivity

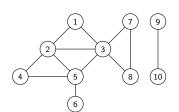
#### Given a graph G = (V, E):

- **1** A path is a sequence of distinct vertices  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$  such that  $\{\mathbf{v}_i, \mathbf{v}_{i+1}\} \in \mathbf{E}$  for  $1 \le i \le k-1$ . The length of the path is k-1 and the path is from  $\mathbf{v}_1$  to  $\mathbf{v}_k$
- ② A cycle is a sequence of distinct vertices  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$  such that  $\{\mathbf{v}_i, \mathbf{v}_{i+1}\} \in \mathbf{E}$  for  $1 \le i \le k-1$  and  $\{\mathbf{v}_1, \mathbf{v}_k\} \in \mathbf{E}$ .
- **3** A vertex  $\mathbf{u}$  is connected to  $\mathbf{v}$  if there is a path from  $\mathbf{u}$  to  $\mathbf{v}$ .
- The connected component of u, con(u), is the set of all vertices connected to u.

### Connectivity contd

Define a relation  $\mathbf{C}$  on  $\mathbf{V} \times \mathbf{V}$  as  $\mathbf{uCv}$  if  $\mathbf{u}$  is connected to  $\mathbf{v}$ 

- In undirected graphs, connectivity is a reflexive, symmetric, and transitive relation. Connected components are the equivalence classes.
- @ Graph is connected if only one connected component.



61

## Connectivity Problems

### Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v?
- 2 Given G and node u, find all nodes that are connected to u.
- 3 Find all connected components of G.

Can be accomplished in O(m + n) time using BFS or DFS.

## Connectivity Problems

#### Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v?
- ② Given G and node u, find all nodes that are connected to u.
- Find all connected components of G.

Can be accomplished in O(m + n) time using BFS or DFS.

## Basic Graph Search

```
Given G = (V, E) and vertex u \in V:

Explore(u):
Initialize S = \{u\}
while there is an edge (x, y) with x \in S and y \notin S do add y to S
```

#### Proposition

```
Explore(u) terminates with S = con(u).
```

Running time: depends on implementation

- Breadth First Search (BFS): use queue data structure
- ② Depth First Search (DFS): use stack data structure
- Review CS 225 material!

## Basic Graph Search

```
Given G = (V, E) and vertex u \in V:

Explore(u):
Initialize S = \{u\}
while there is an edge (x, y) with x \in S and y \not\in S do add y to S
```

#### Proposition

#### **Explore(u)** terminates with S = con(u).

Running time: depends on implementation

- Breadth First Search (BFS): use queue data structure
- ② Depth First Search (DFS): use stack data structure
- Review CS 225 material!

## Basic Graph Search

```
Given G = (V, E) and vertex u \in V:

Explore(u):
Initialize S = \{u\}
while there is an edge (x, y) with x \in S and y \notin S do add y to S
```

#### Proposition

```
Explore(u) terminates with S = con(u).
```

Running time: depends on implementation

- Breadth First Search (BFS): use queue data structure
- Depth First Search (DFS): use stack data structure
- Review CS 225 material!

# Part VI

**DFS** 

## Depth First Search

**DFS** is a very versatile graph exploration strategy. Hopcroft and Tarjan (Turing Award winners) demonstrated the power of **DFS** to understand graph structure. **DFS** can be used to obtain linear time (O(m + n)) time algorithms for

- Finding cut-edges and cut-vertices of undirected graphs
- Finding strong connected components of directed graphs
- Linear time algorithm for testing whether a graph is planar

# DFS in Undirected Graphs

Recursive version.

```
DFS(G)

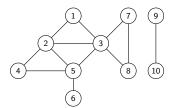
Mark all nodes u as unvisited

while there is an unvisited node u do

DFS(u)
```

Implemented using a global array Mark for all recursive calls.

# Example



### DFS Tree/Forest

```
DFS(G)

Mark all nodes as unvisited
T is set to 0

while \exists unvisited node u do

DFS(u)

Output T

DFS(u)

DFS(u)

Output T

DFS(v)
```

Edges classified into two types:  $uv \in E$  is a

- tree edge: belongs to T
- 2 non-tree edge: does not belong to T

### DFS Tree/Forest

```
DFS(G)

Mark all nodes as unvisited
T is set to ∅

while ∃ unvisited node u do

DFS(u)

Output T

DFS(u)

DFS(v)

DFS(v)

DFS(v)
```

Edges classified into two types:  $\mathbf{u}\mathbf{v} \in \mathbf{E}$  is a

- 1 tree edge: belongs to T
- non-tree edge: does not belong to T

### Properties of DFS tree

### Proposition

- T is a forest
- connected components of T are same as those of G.
- **3** If  $uv \in E$  is a non-tree edge then, in T, either:
  - 1 u is an ancestor of v, or
  - 2 v is an ancestor of u.

Question: Why are there no cross-edges?

#### DFS with Visit Times

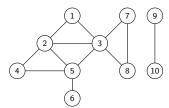
Keep track of when nodes are visited.

```
\begin{array}{c} \mathsf{DFS}(\mathsf{G}) \\ \quad \mathsf{for} \ \mathsf{all} \ \mathsf{u} \in \mathsf{V}(\mathsf{G}) \ \mathsf{do} \\ \quad \quad \mathsf{Mark} \ \mathsf{u} \ \mathsf{as} \ \mathsf{unvisited} \\ \mathsf{T} \ \mathsf{is} \ \mathsf{set} \ \mathsf{to} \ \emptyset \\ \mathsf{time} = 0 \\ \mathsf{while} \ \exists \mathsf{unvisited} \ \mathsf{u} \ \mathsf{do} \\ \quad \quad \mathsf{DFS}(\mathsf{u}) \\ \mathsf{Output} \ \mathsf{T} \end{array}
```

```
DFS(u)
   Mark u as visited
   pre(u) = ++time
   for each uv in Out(u) do
        if v is not marked then
            add edge uv to T
            DFS(v)
   post(u) = ++time
```

# Scratch space

# Example



Node u is active in time interval [pre(u), post(u)]

### Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then</li>
   v visited after u.
- If DFS(v) invoked before DFS(u) finished,
   post(u) > post(v).
- ullet If  $\mathsf{DFS}(\mathsf{v})$  invoked after  $\mathsf{DFS}(\mathsf{u})$  finished,  $\mathrm{pre}(\mathsf{v}) > \mathrm{post}(\mathsf{u})_{\square}$

Node u is active in time interval [pre(u), post(u)]

### Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then</li>
   v visited after u.
- If DFS(v) invoked before DFS(u) finished,
   post(u) > post(v).
- ullet If DFS(v) invoked after DFS(u) finished,  $\operatorname{pre}(v) > \operatorname{post}(u)_{\square}$

Node u is active in time interval [pre(u), post(u)]

### Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.</li>
- If DFS(v) invoked before DFS(u) finished,
   post(u) > post(v).
- ullet If  $\mathsf{DFS}(v)$  invoked after  $\mathsf{DFS}(u)$  finished,  $\mathsf{pre}(v) > \mathsf{post}(u)_{\vdash}$

Node u is active in time interval [pre(u), post(u)]

### Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then</li>
   v visited after u.
- If DFS(v) invoked before DFS(u) finished,
   post(u) > post(v).
- ullet If DFS(v) invoked after DFS(u) finished,  $\operatorname{pre}(v) > \operatorname{post}(u)$

Node u is active in time interval [pre(u), post(u)]

### Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.</li>
- If DFS(v) invoked before DFS(u) finished,
   post(u) > post(v).
- ullet If DFS(v) invoked after DFS(u) finished,  $\operatorname{pre}(v) > \operatorname{post}(u)_{\square}$

Node u is active in time interval [pre(u), post(u)]

### Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

#### Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.</li>
- If DFS(v) invoked before DFS(u) finished,
   post(u) > post(v).
- ullet If  $\mathsf{DFS}(v)$  invoked after  $\mathsf{DFS}(u)$  finished,  $\mathsf{pre}(v) > \mathsf{post}(u)$

### Part VII

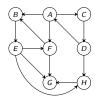
# Directed Graphs and Decomposition

## Directed Graphs

#### Definition

A directed graph G = (V, E) consists of

- set of vertices/nodes V and
- 2 a set of edges/arcs  $\mathbf{E} \subset \mathbf{V} \times \mathbf{V}$ .



An edge is an *ordered* pair of vertices. (u, v) different from (v, u).

## **Examples of Directed Graphs**

In many situations relationship between vertices is asymmetric:

- Road networks with one-way streets.
- Web-link graph: vertices are web-pages and there is an edge from page p to page p' if p has a link to p'. Web graphs used by Google with PageRank algorithm to rank pages.
- Opendency graphs in variety of applications: link from x to y if y depends on x. Make files for compiling programs.
- Program Analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.

### Representation

Graph G = (V, E) with n vertices and m edges:

- **4** Adjacency Matrix:  $n \times n$  asymmetric matrix A. A[u, v] = 1 if  $(u, v) \in E$  and A[u, v] = 0 if  $(u, v) \notin E$ . A[u, v] is not same as A[v, u].
- Adjacency Lists: for each node u, Out(u) (also referred to as Adj(u)) and In(u) store out-going edges and in-coming edges from u.

Default representation is adjacency lists.

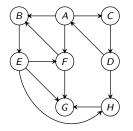
## Directed Connectivity

#### Given a graph G = (V, E):

- ① A (directed) path is a sequence of distinct vertices  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$  such that  $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$  for  $1 \leq i \leq k-1$ . The length of the path is k-1 and the path is from  $\mathbf{v}_1$  to  $\mathbf{v}_k$
- ② A cycle is a sequence of distinct vertices  $v_1, v_2, \dots, v_k$  such that  $(v_i, v_{i+1}) \in E$  for  $1 \le i \le k-1$  and  $(v_k, v_1) \in E$ .
- A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u
- Let rch(u) be the set of all vertices reachable from u.

#### Connectivity contd

Asymmetricity: A can reach B but B cannot reach A

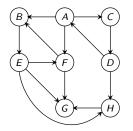


#### Questions

- Is there a notion of connected components?
- ② How do we understand connectivity in directed graphs?

#### Connectivity contd

Asymmetricity: A can reach B but B cannot reach A



#### **Questions:**

- Is there a notion of connected components?
- 4 How do we understand connectivity in directed graphs?

#### **Definition**

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words  $v \in rch(u)$  and  $u \in rch(v)$ .

Define relation C where uCv if u is (strongly) connected to v.

#### Proposition

**C** is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G. They partition the vertices of G.

#### **Definition**

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words  $v \in rch(u)$  and  $u \in rch(v)$ .

Define relation C where uCv if u is (strongly) connected to v.

#### Proposition

**C** is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of **C**: *strong connected components* of **G**. They *partition* the vertices of **G**.

#### **Definition**

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words  $v \in rch(u)$  and  $u \in rch(v)$ .

Define relation C where uCv if u is (strongly) connected to v.

#### Proposition

**C** is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of **C**: *strong connected components* of **G**. They *partition* the vertices of **G**.

#### **Definition**

Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words  $v \in rch(u)$  and  $u \in rch(v)$ .

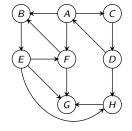
Define relation C where uCv if u is (strongly) connected to v.

#### Proposition

**C** is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G. They partition the vertices of G.

# Strongly Connected Components: Example



## Directed Graph Connectivity Problems

- Given G and nodes u and v, can u reach v?
- ② Given G and u, compute rch(u).
- Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).
- Find the strongly connected component containing node u, that is SCC(u).
- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting BFS/DFS to directed graphs. The last one requires a clever DFS based algorithm.

## Directed Graph Connectivity Problems

- Given G and nodes u and v, can u reach v?
- ② Given G and u, compute rch(u).
- Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).
- Find the strongly connected component containing node u, that is SCC(u).
- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

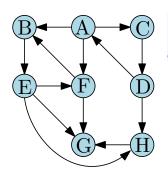
First four problems can be solve in O(n + m) time by adapting BFS/DFS to directed graphs. The last one requires a clever DFS based algorithm.

## DFS in Directed Graphs

```
DFS(G)
    Mark all nodes u as unvisited
    T is set to Ø
    time = 0
    while there is an unvisited node u do
        DFS(un)tput T
```

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each edge (u, v) in Out(u) do
        if v is not marked
            add edge (u, v) to T
            DFS(v)
    post(u) = ++time
```

## Example



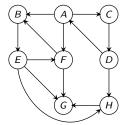
# iClicker Question: What are the strong connected components?

(A)  $\{A, B, C, D, E, F, G, H\}$ 

84

- $\left(\mathsf{B}\right)\ \left\{\mathsf{A},\mathsf{B},\mathsf{C}\right\},\left\{\mathsf{D},\mathsf{E},\mathsf{F}\right\},\left\{\mathsf{G}\right\},\left\{\mathsf{H}\right\}$
- (C)  $\{A, C, D\}, \{B, E, F, H\}, \{G\}$
- $(D) \{A, C, D\}, \{B, E, F\}, \{G\}, \{H\}$
- $\left(\mathsf{E}\right)\ \left\{\mathsf{A},\mathsf{C},\mathsf{D}\right\},\left\{\mathsf{B},\mathsf{E},\mathsf{F}\right\},\left\{\mathsf{G},\mathsf{H}\right\}$

# Example



## **DFS** Properties

Generalizing ideas from undirected graphs:

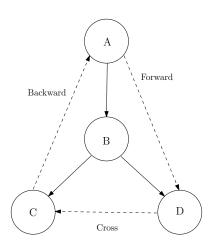
- **OPTITIES** DESCRIPTION OF TWO DESCRIPTION OF TWO
- ② A vertex  $\mathbf{v}$  is in  $\mathbf{T}$  if and only if  $\mathbf{v} \in \operatorname{rch}(\mathbf{u})$
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint are one is contained in the other.
- The running time of DFS(u) is O(k) where  $k = \sum_{v \in rch(u)} |Adj(v)|$  plus the time to initialize the Mark array.
- DFS(G) takes O(m + n) time. Edges in T form a disjoint collection of of out-trees. Output of DFS(G) depends on the order in which vertices are considered.

#### DFS Tree

Edges of **G** can be classified with respect to the **DFS** tree **T** as:

- Tree edges that belong to T
- ② A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).
- **3** A backward edge is a non-tree edge (x, y) such that pre(y) < pre(x) < post(x) < post(y).
- A cross edge is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.

# Types of Edges



## Directed Graph Connectivity Problems

- Given G and nodes u and v, can u reach v?
- ② Given G and u, compute rch(u).
- Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).
- Find the strongly connected component containing node u, that is SCC(u).
- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

- Given G and nodes u and v, can u reach v?
- Given G and u, compute rch(u).

Use DFS(G, u) to compute rch(u) in O(n + m) time.

• Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).

#### Definition (Reverse graph.)

Given G = (V, E),  $G^{rev}$  is the graph with edge directions reversed  $G^{rev} = (V, E')$  where  $E' = \{(y, x) \mid (x, y) \in E\}$ 

#### Compute rch(u) in Grev!

- Correctness: exercise
- Quanting time: O(n + m) to obtain G<sup>rev</sup> from G and O(n + m) time to compute rch(u) via DFS. If both Out(v) and In(v) are available at each v then no need to explicitly compute G<sup>rev</sup>. Can do it DFS(u) in G<sup>rev</sup> implicitly.

• Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).

#### Definition (Reverse graph.)

Given G = (V, E),  $G^{rev}$  is the graph with edge directions reversed  $G^{rev} = (V, E')$  where  $E' = \{(y, x) \mid (x, y) \in E\}$ 

#### Compute rch(u) in Grev!

- Correctness: exercise
- Quanting time: O(n + m) to obtain G<sup>rev</sup> from G and O(n + m) time to compute rch(u) via DFS. If both Out(v) and In(v) are available at each v then no need to explicitly compute G<sup>rev</sup>. Can do it DFS(u) in G<sup>rev</sup> implicitly.

• Given **G** and **u**, compute all **v** that can reach **u**, that is all **v** such that  $\mathbf{u} \in \operatorname{rch}(\mathbf{v})$ .

#### Definition (Reverse graph.)

Given G = (V, E),  $G^{rev}$  is the graph with edge directions reversed  $G^{rev} = (V, E')$  where  $E' = \{(y, x) \mid (x, y) \in E\}$ 

#### Compute rch(u) in Grev!

- Correctness: exercise
- Qunning time: O(n + m) to obtain G<sup>rev</sup> from G and O(n + m) time to compute rch(u) via DFS. If both Out(v) and In(v) are available at each v then no need to explicitly compute G<sup>rev</sup>. Can do it DFS(u) in G<sup>rev</sup> implicitly.

#### $SC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$

Find the strongly connected component containing node up. That is, compute SCC(G, u).

$$SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$$

$$SC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$$

• Find the strongly connected component containing node  $\mathbf{u}$ . That is, compute  $SCC(\mathbf{G}, \mathbf{u})$ .

$$SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$$

$$SC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$$

• Find the strongly connected component containing node  $\mathbf{u}$ . That is, compute  $SCC(\mathbf{G}, \mathbf{u})$ .

$$SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$$

$$SC(G, u) = \{v \mid u \text{ is strongly connected to } v\}$$

• Find the strongly connected component containing node  $\mathbf{u}$ . That is, compute  $SCC(\mathbf{G}, \mathbf{u})$ .

$$SCC(G, u) = rch(G, u) \cap rch(G^{rev}, u)$$

Is G strongly connected?

Pick arbitrary vertex  $\mathbf{u}$ . Check if  $SC(G, \mathbf{u}) = \mathbf{V}$ .

Is G strongly connected?

Pick arbitrary vertex  $\mathbf{u}$ . Check if  $SC(G, \mathbf{u}) = \mathbf{V}$ .

Find all strongly connected components of G.

 $\begin{array}{c} \text{for each vertex } u \in V \text{ do} \\ \text{find } SC(G,u) \end{array}$ 

Running time: O(n(n + m)).

Find all strongly connected components of G.

 $\begin{array}{c} \text{for each vertex } u \in V \text{ do} \\ \text{find } SC(G,u) \end{array}$ 

Running time: O(n(n + m)).

Find all strongly connected components of G.

 $\begin{array}{c} \text{for each vertex } u \in V \text{ do} \\ \text{find } SC(G,u) \end{array}$ 

Running time: O(n(n + m)).

Find all strongly connected components of G.

 $\begin{array}{c} \text{for each vertex } u \in V \ do \\ \text{find } SC(G,u) \end{array}$ 

Running time: O(n(n + m)).

#### Reading and Homework 0

Chapters 1 from Dasgupta etal book, Chapters 1-3 from Kleinberg-Tardos book.

Proving algorithms correct - Jeff Erickson's notes (see link on website)