CS 473: Fundamental Algorithms, Spring 2011

Breadth First Search, Dijkstra's Algorithm for Shortest Paths

Lecture 3
January 25, 2011

Part I

Breadth First Search

Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using a data structure called a queue.
(B) It processes the vertices in the graph in the order of their shortest distance from the vertex \mathbf{s} (the start vertex).

As such...

- DFS good for exploring graph structure
- BFS good for exploring distances

Queue Data Structure

Queues

A queue is a list of elements which supports the following operations

- enqueue: Adds an element to the end of the list
- dequeue: Removes an element from the front of the list Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.

BFS Algorithm

Given (undirected or directed) graph $\mathbf{G}=\mathbf{(V , E)}$ and node $\mathbf{s} \in \mathbf{V}$

BFS(s)

Mark all vertices as unvisited
Initialize search tree \mathbf{T} to be empty
Mark vertex s as visited
set \mathbf{Q} to be the empty queue
enq(s)
while \mathbf{Q} is nonempty do
$\mathbf{u}=\operatorname{deq}(\mathbf{Q})$
for each vertex $\mathbf{v} \in \operatorname{Adj}(\mathbf{u})$
if \mathbf{v} is not visited then add edge (\mathbf{u}, \mathbf{v}) to \mathbf{T} Mark v as visited and enq(v)

Proposition

BFS(s) runs in $\mathbf{O}(\mathbf{n}+\mathbf{m})$ time.

BFS: An Example in Undirected Graphs

(1)

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]} \\ \text { 3. } & {[3,4,5]}\end{array}$

BFS tree is the set of black edges.

BFS: An Example in Undirected Graphs

$\begin{array}{ll}\text { 1. } & {[1]} \\ \text { 2. } & {[2,3]}\end{array}$
3. $[3,4,5]$

BFS tree is the set of black edges.

BFS: An Example in Undirected Graphs

1. [1]
2. $[2,3]$
3. $[3,4,5]$

BFS tree is the set of black edges.

BFS: An Example in Undirected Graphs

1. [1]
2. $[4,5,7,8]$
3. $[2,3]$
4. $[3,4,5]$

BFS tree is the set of black edges.

BFS: An Example in Undirected Graphs

1. [1]
2. $[4,5,7,8]$
3. $[2,3]$
4. $[5,7,8]$
5. $[3,4,5]$

BFS tree is the set of black edges.

BFS: An Example in Undirected Graphs

1. [1]
2. $[4,5,7,8]$
3. $[2,3]$
4. $[5,7,8]$
5. $[3,4,5]$
6. $[7,8,6]$

BFS: An Example in Undirected Graphs

1. [1]
2. $[2,3]$
3. $[3,4,5]$
4. $[4,5,7,8]$
5. $[5,7,8]$
6. $[7,8,6]$

7. $[8,6]$

BFS: An Example in Undirected Graphs

1. [1]
2. $[4,5,7,8]$
3. $[2,3]$
4. $[5,7,8]$

5. $[3,4,5]$
6. $[7,8,6]$

BFS: An Example in Undirected Graphs

1. [1]
2. $[4,5,7,8]$
3. $[2,3]$
4. $[5,7,8]$
5. $[7,8,6]$

6. $[3,4,5]$
7. $[8,6]$
8. [6]
9. []

BFS: An Example in Undirected Graphs

1. [1]
2. $[4,5,7,8]$
3. $[5,7,8]$
4. $[8,6]$
5. $[2,3]$
6. $[7,8,6]$
7. [6]
8. []

BFS tree is the set of black edges.

BFS: An Example in Directed Graphs

BFS with Distance

BFS(s)

Mark all vertices as unvisited and for each v set $\operatorname{dist}(\mathbf{v})=\infty$ Initialize search tree \mathbf{T} to be empty
Mark vertex \mathbf{s} as visited and set $\operatorname{dist}(\mathbf{s})=\mathbf{0}$
set \mathbf{Q} to be the empty queue
enq(s)
while \mathbf{Q} is nonempty do
$\mathbf{u}=\operatorname{deq}(\mathbf{Q})$
for each vertex $v \in \operatorname{Adj}(\mathbf{u})$ do
if \mathbf{v} is not visited do
add edge (\mathbf{u}, \mathbf{v}) to \mathbf{T}
Mark v as visited, enq(v)
and set $\operatorname{dist}(\mathbf{v})=\operatorname{dist}(\mathbf{u})+\mathbf{1}$

Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)
(A) The search tree contains exactly the set of vertices in the connected component of \mathbf{s}.
(B) If $\operatorname{dist}(\mathbf{u})<\operatorname{dist}(\mathbf{v})$ then \mathbf{u} is visited before \mathbf{v}.
(C) For every vertex $\mathbf{u}, \operatorname{dist}(\mathbf{u})$ is indeed the length of shortest path from \mathbf{s} to \mathbf{u}.
(D) If \mathbf{u}, \mathbf{v} are in connected component of \mathbf{s} and $\mathbf{e}=\{\mathbf{u}, \mathbf{v}\}$ is an edge of \mathbf{G}, then either \mathbf{e} is an edge in the search tree, or $|\operatorname{dist}(\mathbf{u})-\operatorname{dist}(\mathrm{v})| \leq 1$.

Proof.

Exercise.

Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable from \mathbf{s}
(B) If $\operatorname{dist}(\mathbf{u})<\operatorname{dist}(\mathbf{v})$ then \mathbf{u} is visited before \mathbf{v}
(C) For every vertex $\mathbf{u}, \operatorname{dist}(\mathbf{u})$ is indeed the length of shortest path from \mathbf{s} to \mathbf{u}
(D) If \mathbf{u} is reachable from \mathbf{s} and $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ is an edge of \mathbf{G}, then either \mathbf{e} is an edge in the search tree, or $\operatorname{dist}(\mathbf{v})-\operatorname{dist}(\mathbf{u}) \leq \mathbf{1}$. Not necessarily the case that $\operatorname{dist}(\mathbf{u})-\operatorname{dist}(\mathbf{v}) \leq 1$.

Proof.

Exercise.

BFS with Layers

BFSLayers(s) :

Mark all vertices as unvisited and initialize \mathbf{T} to be empty Mark s as visited and set $\mathrm{L}_{0}=\{\mathrm{s}\}$
$\mathbf{i}=0$
while $\mathbf{L}_{\mathbf{i}}$ is not empty do initialize $\mathbf{L}_{\mathbf{i + 1}}$ to be an empty list for each \mathbf{u} in $\mathbf{L}_{\mathbf{i}}$ do for each edge $(u, v) \in \operatorname{Adj}(u)$ do if v is not visited
mark v as visited
add (\mathbf{u}, \mathbf{v}) to tree \mathbf{T}
add \mathbf{v} to $\mathbf{L}_{\mathbf{i}+1}$
$\mathbf{i}=\mathbf{i}+\mathbf{1}$

Running time: $\mathbf{O}(\mathbf{n}+\mathbf{m})$

BFS with Layers

BFSLayers(s):

Mark all vertices as unvisited and initialize \mathbf{T} to be empty Mark s as visited and set $\mathrm{L}_{0}=\{\mathrm{s}\}$
$\mathbf{i}=0$
while $\mathbf{L}_{\mathbf{i}}$ is not empty do
initialize $\mathbf{L}_{\mathbf{i + 1}}$ to be an empty list
for each \mathbf{u} in $\mathbf{L}_{\mathbf{i}}$ do
for each edge $(\mathbf{u}, \mathbf{v}) \in \operatorname{Adj}(\mathbf{u})$ do
if v is not visited
mark v as visited
add (\mathbf{u}, \mathbf{v}) to tree \mathbf{T}
add \mathbf{v} to $\mathbf{L}_{\mathbf{i}+1}$
$\mathbf{i}=\mathbf{i}+\mathbf{1}$

Running time: $\mathbf{O}(\mathbf{n}+\mathbf{m})$

Example

BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).

- BFSLayers(s) outputs a BFS tree
- $\mathbf{L}_{\mathbf{i}}$ is the set of vertices at distance exactly \mathbf{i} from \mathbf{s}
- If \mathbf{G} is undirected, each edge $\mathbf{e}=\{\mathbf{u}, \mathbf{v}\}$ is one of three types:
- tree edge between two consecutive layers
- non-tree forward/backward edge between two consecutive layers
- non-tree cross-edge with both \mathbf{u}, \mathbf{v} in same layer
- \Longrightarrow Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.

BFS with Layers: Properties

For directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if G is directed.
For each edge $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ is one of four types:

- a tree edge between consecutive layers, $\mathbf{u} \in \mathbf{L}_{\mathbf{i}}, \mathbf{v} \in \mathbf{L}_{\mathbf{i}+\mathbf{1}}$ for some $\mathbf{i} \geq 0$
- a non-tree forward edge between consecutive layers
- a non-tree backward edge
- a cross-edge with both \mathbf{u}, \mathbf{v} in same layer

Part II

Bipartite Graphs and an application of BFS

Bipartite Graphs

Definition (Bipartite Graph)

Undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is a bipartite graph if \mathbf{V} can be partitioned into \mathbf{X} and \mathbf{Y} s.t. all edges in \mathbf{E} are between \mathbf{X} and \mathbf{Y}.

Bipartite Graph Characterization

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph

Proof

Root tree \mathbf{T} at some node \mathbf{r}. Let $\mathbf{L}_{\mathbf{i}}$ be all nodes at level \mathbf{i}, that is, $\mathbf{L}_{\mathbf{i}}$ is all nodes at distance \mathbf{i} from root \mathbf{r}. Now define \mathbf{X} to be all nodes at even levels and \mathbf{Y} to be all nodes at odd level. Only edges in \mathbf{T} are between levels.

Proposition

An odd length cycle is not bipartite.

Bipartite Graph Characterization

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

```
Proof.
Root tree T}\mathrm{ at some node r. Let }\mp@subsup{\mathbf{L}}{\mathbf{i}}{}\mathrm{ be all nodes at level i, that is, }\mp@subsup{\mathbf{L}}{\mathbf{i}}{
is all nodes at distance i from root r. Now define }\mathbf{X}\mathrm{ to be all nodes at
even levels and Y to be all nodes at odd level. Only edges in T are
between levels
```


Proposition

An odd length cycle is not bipartite.

Bipartite Graph Characterization

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree \mathbf{T} at some node \mathbf{r}. Let $\mathbf{L}_{\mathbf{i}}$ be all nodes at level \mathbf{i}, that is, $\mathbf{L}_{\mathbf{i}}$ is all nodes at distance \mathbf{i} from root \mathbf{r}. Now define \mathbf{X} to be all nodes at even levels and \mathbf{Y} to be all nodes at odd level. Only edges in \mathbf{T} are between levels.

Bipartite Graph Characterization

Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree \mathbf{T} at some node \mathbf{r}. Let $\mathbf{L}_{\mathbf{i}}$ be all nodes at level \mathbf{i}, that is, $\mathbf{L}_{\mathbf{i}}$ is all nodes at distance \mathbf{i} from root \mathbf{r}. Now define \mathbf{X} to be all nodes at even levels and \mathbf{Y} to be all nodes at odd level. Only edges in \mathbf{T} are between levels.

Proposition

An odd length cycle is not bipartite.

Odd Cycles are not Bipartite

Proposition

An odd length cycle is not bipartite.

Proof.

Let $\mathbf{C}=\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathbf{k}+1}, \mathbf{u}_{\mathbf{1}}$ be an odd cycle. Suppose \mathbf{C} is a bipartite graph and let \mathbf{X}, \mathbf{Y} be the bipartition. Without loss of generality $\mathbf{u}_{\mathbf{1}} \in \mathbf{X}$. Implies $\mathbf{u}_{\mathbf{2}} \in \mathbf{Y}$. Implies $\mathbf{u}_{\mathbf{3}} \in \mathbf{X}$. Inductively, $\mathbf{u}_{\mathbf{i}} \in \mathbf{X}$ if \mathbf{i} is odd $\mathbf{u}_{\mathbf{i}} \in \mathbf{Y}$ if \mathbf{i} is even. But $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2 k + 1}}\right\}$ is an edge and both belong to \mathbf{X} !

Subgraphs

Definition

Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ a subgraph of \mathbf{G} is another graph $\mathbf{H}=\left(\mathbf{V}^{\prime}, \mathbf{E}^{\prime}\right)$ where $\mathbf{V}^{\prime} \subseteq \mathbf{V}$ and $\mathbf{E}^{\prime} \subseteq \mathbf{E}$.

Proposition
 If \mathbf{G} is bipartite then any subgraph \mathbf{H} of \mathbf{G} is also bipartite.

Proposition

A graph \mathbf{G} is not bipartite if \mathbf{G} has an odd cycle \mathbf{C} as a subgraph.

Proof.

If \mathbf{G} is bipartite then since \mathbf{C} is a subgraph, \mathbf{C} is also bipartite (by above proposition). However, C is not bipartite!

Subgraphs

Definition

Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ a subgraph of \mathbf{G} is another graph $\mathbf{H}=\left(\mathbf{V}^{\prime}, \mathbf{E}^{\prime}\right)$ where $\mathbf{V}^{\prime} \subseteq \mathbf{V}$ and $\mathbf{E}^{\prime} \subseteq \mathbf{E}$.

Proposition

If \mathbf{G} is bipartite then any subgraph \mathbf{H} of \mathbf{G} is also bipartite.

Proposition
 A graph \mathbf{G} is not bipartite if \mathbf{G} has an odd cycle \mathbf{C} as a subgraph.

Proof.

If \mathbf{G} is bipartite then since \mathbf{C} is a subgraph, \mathbf{C} is also bipartite (by above proposition). However, C is not bipartite!

Subgraphs

Definition

Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ a subgraph of \mathbf{G} is another graph $\mathbf{H}=\left(\mathbf{V}^{\prime}, \mathbf{E}^{\prime}\right)$ where $\mathbf{V}^{\prime} \subseteq \mathbf{V}$ and $\mathbf{E}^{\prime} \subseteq \mathbf{E}$.

Proposition

If \mathbf{G} is bipartite then any subgraph \mathbf{H} of \mathbf{G} is also bipartite.

Proposition

A graph \mathbf{G} is not bipartite if \mathbf{G} has an odd cycle \mathbf{C} as a subgraph.
Proof.
If \mathbf{G} is bipartite then since \mathbf{C} is a subgraph, \mathbf{C} is also bipartite (by above proposition). However, C is not bipartite!

Subgraphs

Definition

Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ a subgraph of \mathbf{G} is another graph $\mathbf{H}=\left(\mathbf{V}^{\prime}, \mathbf{E}^{\prime}\right)$ where $\mathbf{V}^{\prime} \subseteq \mathbf{V}$ and $\mathbf{E}^{\prime} \subseteq \mathbf{E}$.

Proposition

If \mathbf{G} is bipartite then any subgraph \mathbf{H} of \mathbf{G} is also bipartite.

Proposition

A graph \mathbf{G} is not bipartite if \mathbf{G} has an odd cycle \mathbf{C} as a subgraph.

Proof.

If \mathbf{G} is bipartite then since \mathbf{C} is a subgraph, \mathbf{C} is also bipartite (by above proposition). However, \mathbf{C} is not bipartite!

Bipartite Graph Characterization

Theorem

A graph \mathbf{G} is bipartite if and only if it has no odd length cycle as subgraph.

Proof.

Only If: G has an odd cycle implies G is not bipartite.
G has no odd length cycle. Assume without loss of generality that

G is connected

- Pick $\mathbf{1}$ arhitrarily and do BFS(u)
- $X=U_{i}$ is even L_{i} and $Y=U_{i}$ is odd L_{i}
- Claim: \mathbf{X} and \mathbf{Y} is a valid bipartition if \mathbf{G} has no odd length cycle

Bipartite Graph Characterization

Theorem

A graph \mathbf{G} is bipartite if and only if it has no odd length cycle as subgraph.

Proof.

Only If: G has an odd cycle implies \mathbf{G} is not bipartite.
If: G has no odd length cycle. Assume without loss of generality that \mathbf{G} is connected.

- Pick \mathbf{u} arbitrarily and do BFS(\mathbf{u})
- $\mathbf{X}=\cup_{\mathbf{i}}$ is even $\mathbf{L}_{\mathbf{i}}$ and $\mathbf{Y}=U_{i}$ is odd $\mathbf{L}_{\mathbf{i}}$
- Claim: \mathbf{X} and \mathbf{Y} is a valid bipartition if \mathbf{G} has no odd length cycle.

Proof of Claim

Claim

In BFS(\mathbf{u}) if $\mathbf{a}, \mathbf{b} \in \mathbf{L}_{\mathbf{i}}$ and (\mathbf{a}, \mathbf{b}) is an edge then there is an odd length cycle containing $\mathbf{(a , b})$.

```
Proof.
    Let v}\mathrm{ be least common ancestor of a, b}\mathrm{ in BFS tree T
v}\mathrm{ is in some level j < i (could be u}\mathrm{ itself)
Path from v }\rightsquigarrow a in T is of length j - i
Path from v}\rightsquigarrow\mathbf{b}\mathrm{ in T}\mathrm{ is of length }\mathbf{j}-\mathbf{i
These two paths plus (a,b) forms an odd cycle of length
2(j - i) + 1
```

Corollary
There is an $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time algorithm to check if G is bipartite and

Proof of Claim

Claim

In $\operatorname{BFS}(\mathbf{u})$ if $\mathbf{a}, \mathbf{b} \in \mathbf{L}_{\mathbf{i}}$ and (\mathbf{a}, \mathbf{b}) is an edge then there is an odd length cycle containing $\mathbf{(a , b})$.

Proof.

Let \mathbf{v} be least common ancestor of \mathbf{a}, \mathbf{b} in BFS tree \mathbf{T}.
\mathbf{v} is in some level $\mathbf{j}<\mathbf{i}$ (could be \mathbf{u} itself).
Path from $\mathbf{v} \rightsquigarrow \mathbf{a}$ in \mathbf{T} is of length $\mathbf{j}-\mathbf{i}$.
Path from $\mathbf{v} \rightsquigarrow \mathbf{b}$ in \mathbf{T} is of length $\mathbf{j}-\mathbf{i}$.
These two paths plus (\mathbf{a}, \mathbf{b}) forms an odd cycle of length $2(\mathrm{j}-\mathrm{i})+1$.

Corolary

There is an $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time algorithm to check if G is bipartite and

Proof of Claim

Claim

In $\mathrm{BFS}(\mathbf{u})$ if $\mathbf{a}, \mathbf{b} \in \mathbf{L}_{\mathbf{i}}$ and (\mathbf{a}, \mathbf{b}) is an edge then there is an odd length cycle containing (\mathbf{a}, \mathbf{b}).

Proof.

Let \mathbf{v} be least common ancestor of \mathbf{a}, \mathbf{b} in BFS tree \mathbf{T}.
\mathbf{v} is in some level $\mathbf{j}<\mathbf{i}$ (could be \mathbf{u} itself).
Path from $\mathbf{v} \rightsquigarrow \mathbf{a}$ in \mathbf{T} is of length $\mathbf{j}-\mathbf{i}$.
Path from $\mathbf{v} \rightsquigarrow \mathbf{b}$ in \mathbf{T} is of length $\mathbf{j}-\mathbf{i}$.
These two paths plus (\mathbf{a}, \mathbf{b}) forms an odd cycle of length $2(\mathrm{j}-\mathrm{i})+1$.

Corollary

There is an $\mathbf{O}(\mathbf{n}+\mathbf{m})$ time algorithm to check if \mathbf{G} is bipartite and

Part III

Shortest Paths and Dijkstra's Algorithm

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ with edge lengths (or costs). For edge $\mathbf{e}=(\mathbf{u}, \mathbf{v}), \ell(\mathbf{e})=\ell(\mathbf{u}, \mathbf{v})$ is its length.

- Given nodes \mathbf{s}, \mathbf{t} find shortest path from \mathbf{s} to \mathbf{t}.
- Given node s find shortest path from \mathbf{s} to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ with edge lengths (or costs). For edge $\mathbf{e}=(\mathbf{u}, \mathbf{v}), \ell(\mathbf{e})=\ell(\mathbf{u}, \mathbf{v})$ is its length.

- Given nodes \mathbf{s}, \mathbf{t} find shortest path from \mathbf{s} to \mathbf{t}.
- Given node s find shortest path from \mathbf{s} to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths: Non-Negative Edge Lengths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ with non-negative edge lengths. For edge $\mathbf{e}=(\mathbf{u}, \mathbf{v})$, $\ell(e)=\ell(u, v)$ is its length.

- Given nodes \mathbf{s}, \mathbf{t} find shortest path from \mathbf{s} to \mathbf{t}.
- Given node \mathbf{s} find shortest path from \mathbf{s} to all other nodes.
- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
- Given undirected graph G, create a new directed graph G^{\prime} by replacing each edge $\{\mathbf{u}, \mathbf{v}\}$ in G by (\mathbf{u}, \mathbf{v}) and (\mathbf{v}, \mathbf{u}) in G^{\prime}

Single-Source Shortest Paths: Non-Negative Edge Lengths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ with non-negative edge lengths. For edge $\mathbf{e}=(\mathbf{u}, \mathbf{v})$, $\ell(\mathrm{e})=\ell(\mathbf{u}, \mathrm{v})$ is its length.

- Given nodes \mathbf{s}, \mathbf{t} find shortest path from \mathbf{s} to \mathbf{t}.
- Given node \mathbf{s} find shortest path from \mathbf{s} to all other nodes.
- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?

Single-Source Shortest Paths: Non-Negative Edge Lengths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ with non-negative edge lengths. For edge $\mathbf{e}=(\mathbf{u}, \mathbf{v})$, $\ell(\mathrm{e})=\ell(\mathrm{u}, \mathrm{v})$ is its length.

- Given nodes \mathbf{s}, \mathbf{t} find shortest path from \mathbf{s} to \mathbf{t}.
- Given node \mathbf{s} find shortest path from \mathbf{s} to all other nodes.
- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
- Given undirected graph \mathbf{G}, create a new directed graph \mathbf{G}^{\prime} by replacing each edge $\{\mathbf{u}, \mathbf{v}\}$ in \mathbf{G} by (\mathbf{u}, \mathbf{v}) and (\mathbf{v}, \mathbf{u}) in \mathbf{G}^{\prime}.

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- $\mathbf{O}(m+n)$ time algorithm.

Special case: Suppose $\ell(\mathbf{e})$ is an integer for all \mathbf{e} ?
Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\mathrm{e})-1$ dummy nodes on e

Let $\mathrm{L}=\mathrm{max}_{\mathrm{e}} \ell(\mathrm{e})$. New graph has $\mathbf{O}(\mathrm{mL})$ edges and $\mathbf{O}(\mathrm{mL}+\mathrm{n})$

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- $\mathbf{O}(\mathbf{m}+\mathbf{n})$ time algorithm.

Special case: Suppose $\ell(\mathrm{e})$ is an integer for all e ? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\mathrm{e})-\mathbf{1}$ dummy nodes on \mathbf{e}

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- $\mathbf{O}(\mathbf{m}+\mathbf{n})$ time algorithm.

Special case: Suppose $\ell(\mathbf{e})$ is an integer for all \mathbf{e} ?
Can we use BFS? Reduce to unit edge-length problem by placing
$\ell(\mathrm{e})-1$ dummy nodes on e

Let $\mathrm{L}=$ max $_{\mathrm{e}} \ell(\mathrm{e})$. New graph has $\mathrm{O}(\mathrm{mL})$ edges and $\mathrm{O}(\mathrm{mL}+\mathrm{n})$
nodes. BFS takes $\mathrm{O}(\mathrm{mL}+\mathrm{n})$ time. Not efficient if L , is

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- $\mathbf{O}(\mathbf{m}+\mathbf{n})$ time algorithm.

Special case: Suppose $\ell(\mathrm{e})$ is an integer for all \mathbf{e} ?
Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\mathbf{e})-\mathbf{1}$ dummy nodes on \mathbf{e}

Let $\mathrm{L}=$ max $_{\mathrm{e}} \ell(\mathrm{e})$. New graph has $\mathrm{O}(\mathrm{mL})$ edges and $\mathrm{O}(\mathrm{mL}+\mathrm{n})$ nodes. BFS takes $\mathrm{O}(\mathrm{mL}+\mathrm{n})$ time. Not efficient if L , is large

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- $\mathbf{O}(\mathbf{m}+\mathbf{n})$ time algorithm.

Special case: Suppose $\ell(\mathbf{e})$ is an integer for all \mathbf{e} ?
Can we use BFS? Reduce to unit edge-length problem by placing $\ell(\mathbf{e})-\mathbf{1}$ dummy nodes on \mathbf{e}

Let $\mathbf{L}=\boldsymbol{m a x}_{\mathbf{e}} \ell(\mathbf{e})$. New graph has $\mathbf{O}(\mathbf{m L})$ edges and $\mathbf{O}(\mathbf{m L}+\mathbf{n})$ nodes. BFS takes $\mathbf{O}(\mathbf{m L}+\mathbf{n})$ time. Not efficient if \mathbf{L} is large.

Towards an algorithm

Why does BFS work?

BFS(s) explores nodes in increasing distance from s

Lemma

Let \mathbf{G} be a directed graph with non-negative edge lengths. Let dist(s, v) denote the shortest path length from s to v. If
$\mathbf{s}=\mathbf{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \mathbf{v}_{\mathbf{k}}$ is a shortest path from \mathbf{s} to $\mathbf{v}_{\mathbf{k}}$ then for $\mathbf{1} \leq \mathbf{i}<\mathbf{k}$.

- $\mathrm{s}=\mathrm{v}_{0} \rightarrow \mathrm{v}_{1} \rightarrow \mathrm{v}_{2} \rightarrow \ldots \rightarrow \mathrm{v}_{\mathrm{i}}$ is a shortest path from s to v_{i}
- $\operatorname{dist}\left(\mathbf{s}, \mathrm{v}_{\mathrm{i}}\right) \leq \operatorname{dist}\left(\mathrm{s}, \mathrm{v}_{\mathrm{k}}\right)$.

Proof

Suppose not. Then for some $\mathbf{i}<\mathbf{k}$ there is a path \mathbf{P}^{\prime} from \mathbf{s} to $\mathbf{v}_{\mathbf{i}}$ of length strictly less than that of $\mathbf{s}=\mathbf{v}_{0} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \ldots \rightarrow \mathbf{v}_{\mathbf{i}}$. Then \mathbf{P}^{\prime} concatenated with $\mathrm{v}_{\mathrm{i}} \rightarrow \mathrm{v}_{\mathrm{i}+1} \ldots \rightarrow \mathrm{v}_{\mathrm{k}}$ contains a strictly shorter

Towards an algorithm

Why does BFS work?
 BFS(s) explores nodes in increasing distance from s

Lemma

Let \mathbf{G} be a directed graph with non-negative edge lengths. Let dist(\mathbf{s}, \mathbf{v}) denote the shortest path length from s to v. If
 then for $\mathbf{1} \leq \mathbf{i}<\mathbf{k}$:

- $\mathbf{s}=\mathbf{v}_{\mathbf{n}} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \mathrm{v}_{2} \rightarrow \ldots \rightarrow \mathrm{v}_{\mathrm{i}}$ is a shortest path from s to v_{i} - $\operatorname{dist}\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right) \leq \operatorname{dist}\left(\mathrm{s}, \mathrm{v}_{\mathrm{k}}\right)$

Proof.

Sunnose not. Then for some $\mathrm{i}<\mathrm{k}$ there is a path P^{\prime} from s to v_{i} of length strictly less than that of $\mathrm{s}=\mathrm{v}_{0} \rightarrow \mathrm{v}_{1} \rightarrow \ldots \rightarrow \mathrm{v}_{\mathrm{i}}$. Then P^{\prime} concatenated with $\mathrm{v}_{\mathrm{i}} \rightarrow \mathrm{v}_{\mathrm{i}+1} \ldots \rightarrow \mathrm{v}_{\mathrm{k}}$ contains a strictly shorter

Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma

Let \mathbf{G} be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(\mathbf{s}, \mathbf{v})$ denote the shortest path length from \mathbf{s} to \mathbf{v}. If $\mathbf{s}=\mathbf{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \mathbf{v}_{\mathbf{k}}$ is a shortest path from \mathbf{s} to $\mathbf{v}_{\mathbf{k}}$ then for $\mathbf{1} \leq \mathbf{i}<\mathbf{k}$:

- $\mathbf{s}=\mathbf{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \mathbf{v}_{\mathbf{i}}$ is a shortest path from \mathbf{s} to $\mathbf{v}_{\mathbf{i}}$
- $\operatorname{dist}\left(\mathbf{s}, \mathbf{v}_{\mathbf{i}}\right) \leq \operatorname{dist}\left(\mathbf{s}, \mathbf{v}_{\mathrm{k}}\right)$.

[^0]
Towards an algorithm

Lemma

Let \mathbf{G} be a directed graph with non-negative edge lengths. Let $\operatorname{dist}(\mathbf{s}, \mathbf{v})$ denote the shortest path length from \mathbf{s} to \mathbf{v}. If $\mathbf{s}=\mathbf{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \mathbf{v}_{\mathbf{k}}$ is a shortest path from \mathbf{s} to $\mathbf{v}_{\mathbf{k}}$ then for $\mathbf{1} \leq \mathbf{i}<\mathbf{k}$:

- $\mathbf{s}=\mathbf{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{1}} \rightarrow \mathbf{v}_{\mathbf{2}} \rightarrow \ldots \rightarrow \mathbf{v}_{\mathbf{i}}$ is a shortest path from \mathbf{s} to $\mathbf{v}_{\mathbf{i}}$
$-\operatorname{dist}\left(\mathrm{s}, \mathrm{v}_{\mathrm{i}}\right) \leq \operatorname{dist}\left(\mathrm{s}, \mathrm{v}_{\mathrm{k}}\right)$.

Proof.

Suppose not. Then for some $\mathbf{i}<\mathbf{k}$ there is a path \mathbf{P}^{\prime} from \mathbf{s} to $\mathbf{v}_{\mathbf{i}}$ of length strictly less than that of $\mathbf{s}=\mathbf{v}_{0} \rightarrow \mathbf{v}_{1} \rightarrow \ldots \rightarrow \mathbf{v}_{\mathbf{i}}$. Then \mathbf{P}^{\prime} concatenated with $\mathbf{v}_{\mathbf{i}} \rightarrow \mathbf{v}_{\mathbf{i}+1} \ldots \rightarrow \mathbf{v}_{\mathbf{k}}$ contains a strictly shorter path to $\mathbf{v}_{\mathbf{k}}$ than $\mathbf{s}=\mathbf{v}_{\mathbf{0}} \rightarrow \mathbf{v}_{\mathbf{1}} \ldots \rightarrow \mathbf{v}_{\mathbf{k}}$.

A proof by picture

A proof by picture

A proof by picture

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from \mathbf{s} and that no edge has zero length)

Initialize for each node \mathbf{v}, $\operatorname{dist}(\mathbf{s}, \mathbf{v})=\infty$ Initialize $\mathbf{S}=\emptyset$,
for $\mathbf{i}=1$ to $|V|$ do
(* Invariant: \mathbf{S} contains the $\mathbf{i} \mathbf{- 1}$ closest nodes to \mathbf{s} *)
Among nodes in $\mathbf{V} \backslash \mathbf{S}$, find the node \mathbf{v} that is the ith closest to s
Update dist(s, v)
$\mathbf{S}=\mathbf{S} \cup\{\mathbf{v}\}$

How can we implement the step in the for loop?

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from \mathbf{s} and that no edge has zero length)

Initialize for each node v, $\operatorname{dist}(\mathbf{s}, \mathbf{v})=\infty$ Initialize S = Ø,
for $\mathbf{i}=\mathbf{1}$ to $|\mathbf{V}|$ do
(* Invariant: \mathbf{S} contains the $\mathbf{i} \mathbf{- 1}$ closest nodes to \mathbf{s} *)
Among nodes in $\mathbf{V} \backslash \mathbf{S}$, find the node \mathbf{v} that is the ith closest to s
Update dist(s, v)
$\mathbf{S}=\mathbf{S} \cup\{\mathbf{v}\}$

How can we implement the step in the for loop?

Finding the ith closest node

- S contains the $\mathbf{i}-\mathbf{1}$ closest nodes to \mathbf{s}
- Want to find the ith closest node from $\mathbf{V}-\mathbf{S}$.

What do we know about the ith closest node?

Claim
 Let \mathbf{P} be a shortest path from \mathbf{s} to \mathbf{v} where \mathbf{v} is the \mathbf{i} th closest node. Then, all intermediate nodes in \mathbf{P} belong to \mathbf{S}.

Proof.
 If \mathbf{P} had an intermediate node \mathbf{u} not in \mathbf{S} then \mathbf{u} will be closer to \mathbf{s} than v. Implies v is not the ith closest node to s-recall that S already has the $\mathbf{i}-\mathbf{1}$ closest nodes.

Finding the ith closest node

- S contains the $\mathbf{i} \mathbf{- 1}$ closest nodes to \mathbf{s}
- Want to find the ith closest node from $\mathbf{V}-\mathbf{S}$.

What do we know about the ith closest node?

Claim

Let \mathbf{P} be a shortest path from \mathbf{s} to \mathbf{v} where \mathbf{v} is the \mathbf{i} th closest node. Then, all intermediate nodes in \mathbf{P} belong to \mathbf{S}.

Finding the ith closest node

- S contains the $\mathbf{i} \mathbf{- 1}$ closest nodes to \mathbf{s}
- Want to find the ith closest node from V - S.

What do we know about the ith closest node?

Claim

Let \mathbf{P} be a shortest path from \mathbf{s} to \mathbf{v} where \mathbf{v} is the ith closest node. Then, all intermediate nodes in \mathbf{P} belong to \mathbf{S}.

Proof.

If \mathbf{P} had an intermediate node \mathbf{u} not in \mathbf{S} then \mathbf{u} will be closer to \mathbf{s} than \mathbf{v}. Implies \mathbf{v} is not the ith closest node to \mathbf{s} - recall that \mathbf{S} already has the $\mathbf{i} \mathbf{- 1}$ closest nodes.

Finding the ith closest node repeatedly

An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

An example

Finding the ith closest node repeatedly

An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node repeatedly

 An example

Finding the ith closest node

Corollary

The ith closest node is adjacent to \mathbf{S}.

Finding the ith closest node

- S contains the $\mathbf{i}-\mathbf{1}$ closest nodes to \mathbf{s}
- Want to find the ith closest node from $\mathbf{V}-\mathbf{S}$.
- For each $\mathbf{u} \in \mathbf{V}-\mathbf{S}$ let $\mathbf{P}(\mathbf{s}, \mathbf{u}, \mathbf{S})$ be a shortest path from \mathbf{s} to \mathbf{u} using only nodes in \mathbf{S} as intermediate vertices.
- Let $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ be the length of $\mathbf{P}(\mathbf{s}, \mathbf{u}, \mathbf{S})$

Observations: for each $u \in V-S$,

- $\operatorname{dist}(\mathbf{s}, \mathbf{u}) \leq \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ since we are constraining the paths
- $\mathrm{d}^{\prime}(\mathrm{s}, \mathrm{u})=\min _{\mathrm{a} \in \mathrm{S}}(\operatorname{dist}(\mathrm{s}, \mathrm{a})+\ell(\mathrm{a}, \mathrm{u}))-$ Why?
\square
Lemma
If \mathbf{v} is the ith closest node to s , then $\mathrm{d}^{\prime}(\mathrm{s}, \mathrm{v})=\operatorname{dist}(\mathrm{s}, \mathrm{v})$

Finding the ith closest node

- S contains the $\mathbf{i}-\mathbf{1}$ closest nodes to \mathbf{s}
- Want to find the ith closest node from V - S.
- For each $\mathbf{u} \in \mathbf{V}-\mathbf{S}$ let $\mathbf{P}(\mathbf{s}, \mathbf{u}, \mathbf{S})$ be a shortest path from \mathbf{s} to \mathbf{u} using only nodes in \mathbf{S} as intermediate vertices.
- Let $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ be the length of $\mathbf{P}(\mathbf{s}, \mathbf{u}, \mathbf{S})$

Observations: for each $\mathbf{u} \in \mathbf{V}-\mathbf{S}$,

- $\operatorname{dist}(\mathbf{s}, \mathbf{u}) \leq \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ since we are constraining the paths
- $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})=\min _{\mathrm{a} \in \mathrm{S}}(\operatorname{dist}(\mathbf{s}, \mathbf{a})+\ell(\mathbf{a}, \mathbf{u}))-$ Why?

Lemma

If \mathbf{v} is the \mathbf{i} th closest node to \mathbf{s}, then $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})=\operatorname{dist}(\mathbf{s}, \mathbf{v})$

Finding the ith closest node

- S contains the $\mathbf{i}-\mathbf{1}$ closest nodes to \mathbf{s}
- Want to find the ith closest node from $\mathbf{V}-\mathbf{S}$.
- For each $\mathbf{u} \in \mathbf{V}-\mathbf{S}$ let $\mathbf{P}(\mathbf{s}, \mathbf{u}, \mathbf{S})$ be a shortest path from \mathbf{s} to u using only nodes in \mathbf{S} as intermediate vertices.
- Let $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ be the length of $\mathbf{P}(\mathbf{s}, \mathbf{u}, \mathbf{S})$

Observations: for each $\mathbf{u} \in \mathbf{V}-\mathbf{S}$,

- $\operatorname{dist}(\mathbf{s}, \mathbf{u}) \leq \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ since we are constraining the paths
- $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})=\min _{\mathrm{a} \in \mathrm{S}}(\operatorname{dist}(\mathbf{s}, \mathrm{a})+\ell(\mathbf{a}, \mathbf{u}))-$ Why?

Lemma

If \mathbf{v} is the \mathbf{i} th closest node to \mathbf{s}, then $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})=\operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Finding the ith closest node

Lemma

If \mathbf{v} is an $\mathbf{i t h}$ closest node to \mathbf{s}, then $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})=\operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Proof.

Let \mathbf{v} be the ith closest node to \mathbf{s}. Then there is a shortest path \mathbf{P} from \mathbf{s} to \mathbf{v} that contains only nodes in \mathbf{S} as intermediate nodes (see previous claim). Therefore $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})=\operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Finding the ith closest node

Lemma

If \mathbf{v} is an ith closest node to \mathbf{s}, then $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})=\operatorname{dist}(\mathbf{s}, \mathbf{v})$.

Corollary

The ith closest node to \mathbf{s} is the node $\mathbf{v} \in \mathbf{V}-\mathbf{S}$ such that $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})=\boldsymbol{m i n}_{\mathbf{u} \in \mathrm{v}-\mathrm{s}} \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$.

Proof.

For every node $\mathbf{u} \in \mathbf{V}-\mathbf{S}, \operatorname{dist}(\mathbf{s}, \mathbf{u}) \leq \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ and for the ith closest node $\mathbf{v}, \operatorname{dist}(\mathbf{s}, \mathbf{v})=\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})$. Moreover, $\operatorname{dist}(\mathbf{s}, \mathbf{u}) \geq \operatorname{dist}(\mathbf{s}, \mathbf{v})$ for each $\mathbf{u} \in \mathbf{V}-\mathbf{S}$.

Algorithm

Initialize for each node \mathbf{v} : $\operatorname{dist}(\mathbf{s}, \mathbf{v})=\infty$
Initialize $S=\emptyset, \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{s})=0$
for $\mathbf{i}=\mathbf{1}$ to $|\mathbf{V}|$ do
(* Invariant: S contains the i-1 closest nodes to s *)
(* Invariant: d' (s,u) is shortest path distance from u to s using only S as intermediate nodes*)
Let v be such that $d^{\prime}(s, v)=\min _{u \in v-s} d^{\prime}(s, u)$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$\mathrm{S}=\mathrm{S} \cup\{\mathrm{v}\}$
for each node \mathbf{u} in $\mathbf{V} \backslash \mathbf{S}$ compute $d^{\prime}(\mathrm{s}, \mathrm{u})=\min _{\mathbf{a} \in \mathrm{S}}(\operatorname{dist}(\mathbf{s}, \mathbf{a})+\ell(\mathbf{a}, \mathbf{u}))$

Correctness: By induction on i using previous lemmas. $\mathbf{O}(\mathbf{n} \cdot(\mathrm{n}+\mathbf{m}))$ time.

- n outer iterations. In each iteration, $d^{\prime}(s, u)$ for each u by scanning all edges out of nodes in $\mathrm{S} ; \mathrm{O}(\mathrm{m}+\mathrm{n})$ time/iteration

Algorithm

Initialize for each node \mathbf{v} : $\operatorname{dist}(s, v)=\infty$
Initialize $S=\emptyset, \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{s})=\mathbf{0}$
for $\mathbf{i}=\mathbf{1}$ to $|\mathbf{V}|$ do
(* Invariant: S contains the i-1 closest nodes to s *)
(* Invariant: d' (s, u) is shortest path distance from u to s using only S as intermediate nodes*)
Let v be such that $\mathrm{d}^{\prime}(\mathrm{s}, \mathrm{v})=\boldsymbol{m i n}_{\mathbf{u} \in \mathrm{V}-\mathrm{s}} \mathrm{d}^{\prime}(\mathrm{s}, \mathrm{u})$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$\mathbf{S}=\mathbf{S} \cup\{v\}$
for each node \mathbf{u} in $\mathbf{V} \backslash \mathbf{S}$ compute $d^{\prime}(s, u)=\min _{\mathbf{a} \in \mathrm{S}}(\operatorname{dist}(\mathbf{s}, \mathbf{a})+\ell(\mathbf{a}, \mathbf{u}))$

Correctness: By induction on \mathbf{i} using previous lemmas.

- \mathbf{n} outer iterations. In each iteration, $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ for each \mathbf{u} by scanning all edges out of nodes in $\mathrm{S} ; \mathrm{O}(\mathrm{m}+\mathrm{n})$ time/iteration.

Algorithm

Initialize for each node \mathbf{v} : $\operatorname{dist}(s, v)=\infty$
Initialize $S=\emptyset, \mathbf{d}^{\prime}(\mathbf{s}, \mathrm{s})=\mathbf{0}$
for $\mathbf{i}=\mathbf{1}$ to $|\mathbf{V}|$ do
(* Invariant: S contains the i-1 closest nodes to s *)
(* Invariant: d' (s, u) is shortest path distance from u to s using only S as intermediate nodes*)
Let v be such that $\mathrm{d}^{\prime}(\mathrm{s}, \mathrm{v})=\boldsymbol{m i n}_{\mathbf{u} \in \mathbf{V}-\mathrm{s}} \mathrm{d}^{\prime}(\mathrm{s}, \mathrm{u})$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$\mathbf{S}=\mathbf{S} \cup\{v\}$
for each node \mathbf{u} in $\mathbf{V} \backslash \mathbf{S}$ compute $d^{\prime}(s, u)=\min _{\mathbf{a} \in \mathrm{S}}(\operatorname{dist}(\mathbf{s}, \mathbf{a})+\ell(\mathbf{a}, \mathbf{u}))$

Correctness: By induction on \mathbf{i} using previous lemmas.
Running time:

- n outer iterations. In each iteration, $d^{\prime}(s, u)$ for each u by

Algorithm

```
Initialize for each node \(v\) : \(\operatorname{dist}(\mathbf{s}, \mathbf{v})=\infty\)
Initialize \(S=\emptyset, \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{s})=0\)
for \(\mathbf{i}=\mathbf{1}\) to \(|\mathbf{V}|\) do
    (* Invariant: S contains the i-1 closest nodes to s *)
    (* Invariant: d' (s,u) is shortest path distance from u to s
    using only \(S\) as intermediate nodes*)
    Let \(v\) be such that \(d^{\prime}(s, v)=\min _{u \in v-s} d^{\prime}(s, u)\)
    \(\operatorname{dist}(s, v)=d^{\prime}(s, v)\)
    \(\mathbf{S}=\mathbf{S} \cup\{v\}\)
    for each node \(\mathbf{u}\) in \(\mathbf{V} \backslash \mathbf{S}\)
        compute \(d^{\prime}(s, u)=\min _{\mathbf{a} \in \mathrm{S}}(\operatorname{dist}(\mathbf{s}, \mathbf{a})+\ell(\mathbf{a}, \mathbf{u}))\)
```

Correctness: By induction on \mathbf{i} using previous lemmas.
Running time: $\mathbf{O}(\mathbf{n} \cdot(\mathbf{n}+\mathbf{m})$) time.

- \mathbf{n} outer iterations. In each iteration, $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ for each \mathbf{u} by scanning all edges out of nodes in $\mathbf{S} ; \mathbf{O}(\mathbf{m}+\mathbf{n})$ time/iteration.

Example

Improved Algorithm

- Main work is to compute the $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ values in each iteration
- $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ changes from iteration \mathbf{i} to $\mathbf{i}+\mathbf{1}$ only because of the node \mathbf{v} that is added to \mathbf{S} in iteration \mathbf{i}.

Running time: $\mathbf{O}\left(\mathbf{m}+\mathbf{n}^{2}\right)$ time.

- \mathbf{n} outer iterations and in each iteration following steps

Improved Algorithm

- Main work is to compute the $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ values in each iteration
- $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ changes from iteration \mathbf{i} to $\mathbf{i}+\mathbf{1}$ only because of the node \mathbf{v} that is added to \mathbf{S} in iteration \mathbf{i}.
Initialize for each node \mathbf{v}, $\operatorname{dist}(\mathbf{s}, \mathbf{v})=\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})=\infty$ Initialize $S=\emptyset, d^{\prime}(s, s)=0$
for $\mathbf{i}=\mathbf{1}$ to $|\mathbf{V}|$ do

$$
\begin{aligned}
& \text { // } \mathbf{S} \text { contains the } \mathbf{i}-\mathbf{1} \text { closest nodes to } \mathbf{s} \text {, } \\
& \text { // and the values of } \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u}) \text { are current } \\
& \text { Let } \mathbf{v} \text { be such that } d^{\prime}(s, v)=\mathbf{m i n}_{\mathbf{u} \in \mathbf{v}-\mathbf{s}} d^{\prime}(s, u) \\
& \operatorname{dist}(\mathbf{s}, \mathbf{v})=\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v}) \\
& \mathbf{S}=\mathbf{S} \cup\{\mathbf{v}\} \\
& \text { Update } d^{\prime}(\mathbf{s}, u) \text { for each } u \text { in } V-S \text { as follows: } \\
& \quad \mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})=\boldsymbol{\operatorname { m i n }}\left(\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u}), \operatorname{dist}(\mathbf{s}, \mathbf{v})+\ell(\mathbf{v}, \mathbf{u})\right)
\end{aligned}
$$

Running time:

Improved Algorithm

Initialize for each node \mathbf{v}, $\operatorname{dist}(\mathbf{s}, \mathbf{v})=\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{v})=\infty$ Initialize $S=\emptyset$, d' $(s, s)=0$
for $\mathbf{i}=1$ to $|V|$ do
// \mathbf{S} contains the $\mathbf{i} \mathbf{- 1}$ closest nodes to \mathbf{s}, // and the values of $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ are current
Let v be such that $d^{\prime}(s, v)=\min _{u \in v-s} d^{\prime}(s, u)$ $\operatorname{dist}(s, v)=d^{\prime}(s, v)$ $S=S \cup\{v\}$
Update d' (s,u) for each u in $V-S$ as follows:

$$
\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})=\min \left(\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u}), \operatorname{dist}(\mathbf{s}, \mathbf{v})+\ell(\mathbf{v}, \mathbf{u})\right)
$$

Running time: $\mathbf{O}\left(\mathbf{m}+\mathbf{n}^{\mathbf{2}}\right)$ time.

- \mathbf{n} outer iterations and in each iteration following steps
- updating $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ after \mathbf{v} added takes $\mathbf{O}(\mathbf{\operatorname { d e g }}(\mathbf{v}))$ time so total work is $\mathbf{O}(\mathbf{m})$ since a node enters \mathbf{S} only once
- Finding \mathbf{v} from $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ values is $\mathbf{O}(\mathbf{n})$ time

Dijkstra's Algorithm

- eliminate $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ and let $\operatorname{dist}(\mathbf{s}, \mathbf{u})$ maintain it
- update dist values after adding \mathbf{v} by scanning edges out of \mathbf{v}

$$
\begin{aligned}
& \text { Initialize for each node } \mathbf{v}, \operatorname{dist}(\mathbf{s}, \mathbf{v})=\infty \\
& \text { Initialize } \mathrm{S}=\{\mathbf{s}\}, \operatorname{dist}(\mathbf{s}, \mathbf{s})=\mathbf{0} \\
& \text { for } \mathbf{i}=\mathbf{1} \text { to }|\mathbf{V}| \mathbf{d o} \\
& \text { Let } \mathrm{v} \text { be such that } \operatorname{dist}(\mathbf{s}, \mathbf{v})=\boldsymbol{m i n}_{\mathbf{u} \in \mathbf{v}-\mathbf{s}} \operatorname{dist}(\mathbf{s}, \mathbf{u}) \\
& \mathbf{S}=\mathbf{S} \cup\{\mathbf{v}\} \\
& \quad \text { for } \operatorname{each} \mathbf{u} \operatorname{in} \operatorname{Adj}(\mathbf{v}) \operatorname{do} \\
& \quad \operatorname{dist}(\mathbf{s}, \mathbf{u})=\boldsymbol{\operatorname { m i n }}(\operatorname{dist}(\mathbf{s}, \mathbf{u}), \operatorname{dist}(\mathbf{s}, \mathbf{v})+\ell(\mathbf{v}, \mathbf{u}))
\end{aligned}
$$

Priority Queues to maintain dist values for faster running time
> - Using heaps and standard priority queues:
> $O((m+n) \log n)$
> - Using Fibonacci heaps: $\mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$.

Dijkstra's Algorithm

- eliminate $\mathbf{d}^{\prime}(\mathbf{s}, \mathbf{u})$ and let $\operatorname{dist}(\mathbf{s}, \mathbf{u})$ maintain it
- update dist values after adding \mathbf{v} by scanning edges out of \mathbf{v}

```
Initialize for each node v, dist(s,v) = \infty
Initialize S = {s}, dist(s,s)=0
for i=1 to |V| do
```



```
    S = S \cup{v}
    for each u in Adj(v) do
        dist(s,u) = min(dist(s,u), dist(s,v) +\ell(v,u))
```

Priority Queues to maintain dist values for faster running time

- Using heaps and standard priority queues: $\mathbf{O}((\mathbf{m}+\mathbf{n}) \log \mathbf{n})$
- Using Fibonacci heaps: $\mathbf{O}(\mathbf{m}+\mathbf{n} \log \mathbf{n})$.

Priority Queues

Data structure to store a set \mathbf{S} of \mathbf{n} elements where each element $\mathbf{v} \in \mathbf{S}$ has an associated real/integer key $\mathbf{k}(\mathbf{v})$ such that the following operations

- makeQ: create an empty queue
- findMin: find the minimum key in S
- extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it
- add (v, k(v)): Add new element \mathbf{v} with key $\mathbf{k}(\mathbf{v})$ to \mathbf{S}
- delete(v): Remove element v from S
- decreaseKey (v, k' (v)) : decrease key of v from $k(v)$ (current key) to $\mathbf{k}^{\prime}(\mathbf{v})$ (new key). Assumption: $\mathbf{k}^{\prime}(\mathbf{v}) \leq \mathbf{k}(\mathbf{v})$
- meld: merge two separate priority queues into one can be performed in $\mathrm{O}(\log \mathrm{n})$ time each. decreaseKey via delete and add

Priority Queues

Data structure to store a set \mathbf{S} of \mathbf{n} elements where each element $\mathbf{v} \in \mathbf{S}$ has an associated real/integer key $\mathbf{k}(\mathbf{v})$ such that the following operations

- makeQ: create an empty queue
- findMin: find the minimum key in S
- extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it
- add (v, k(v)): Add new element v with key $\mathbf{k}(\mathbf{v})$ to \mathbf{S}
- delete(v): Remove element v from S
- decreaseKey (v, $\left.\mathrm{k}^{\prime}(\mathrm{v})\right)$: decrease key of \mathbf{v} from $\mathbf{k}(\mathbf{v})$ (current key) to $\mathbf{k}^{\prime}(\mathbf{v})$ (new key). Assumption: $\mathbf{k}^{\prime}(\mathbf{v}) \leq \mathbf{k}(\mathbf{v})$
- meld: merge two separate priority queues into one
can be performed in $\mathrm{O}(\log n)$ time each.
decreaseKey via delete and add

Priority Queues

Data structure to store a set \mathbf{S} of \mathbf{n} elements where each element $\mathbf{v} \in \mathbf{S}$ has an associated real/integer key $\mathbf{k}(\mathbf{v})$ such that the following operations

- makeQ: create an empty queue
- findMin: find the minimum key in S
- extractMin: Remove $\mathbf{v} \in \mathbf{S}$ with smallest key and return it
- add(v, k(v)): Add new element \mathbf{v} with key $\mathbf{k}(\mathbf{v})$ to \mathbf{S}
- delete(v): Remove element v from S
- decreaseKey (v, $\left.k^{\prime}(v)\right)$: decrease key of \mathbf{v} from $\mathbf{k}(\mathbf{v})$ (current key) to $\mathbf{k}^{\prime}(\mathbf{v})$ (new key). Assumption: $\mathbf{k}^{\prime}(\mathbf{v}) \leq \mathbf{k}(\mathbf{v})$
- meld: merge two separate priority queues into one can be performed in $\mathbf{O}(\log \mathbf{n})$ time each. decreaseKey via delete and add

Dijkstra's Algorithm using Priority Queues

```
Q = makePQ()
insert(Q, (s,0))
for each node u}=\mathbf{s}\mathrm{ do
    insert(Q, (u,\infty))
S = \emptyset
for i=1 to |V| do
    (v, dist(s,v)) = extractMin(Q)
    S=S U{v}
    For each u in Adj(v) do
        decreaseKey(Q,(u,min(\operatorname{dist}(\mathbf{s},\mathbf{u}),\operatorname{dist}(\mathbf{s},\mathbf{v})+\ell(\mathbf{v},\mathbf{u}))))
```

Priority Queue operations:

- $\mathbf{O (n)}$ insert operations
- O(n) extractMin operations
- $\mathbf{O}(\mathbf{m})$ decreaseKey operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

- All operations can be done in $\mathbf{O}(\log n)$ time

Dijkstra's algorithm can be implemented in $\mathbf{O}((\mathbf{n}+\mathbf{m}) \log \mathbf{n})$ time.

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

- All operations can be done in $\mathbf{O}(\log n)$ time

Dijkstra's algorithm can be implemented in $\mathbf{O}((\mathbf{n}+\mathbf{m}) \log \mathbf{n})$ time.

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, add, delete, meld in $\mathbf{O}(\log n)$ time
- decreaseKey in $\mathbf{O (1)}$ amortized time: ℓ decreaseKey operations for $\ell \geq \mathbf{n}$ take together $\mathbf{O}(\ell)$ time
- Relaxed Heaps: decreaseKey in $\mathbf{O (1)}$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{m})$ time. If $\mathbf{m}=\Omega(\mathbf{n} \log \mathbf{n})$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, add, delete, meld in $\mathbf{O}(\log n)$ time
- decreaseKey in $\mathbf{O (1)}$ amortized time: ℓ decreaseKey operations for $\ell \geq \mathbf{n}$ take together $\mathbf{O}(\ell)$ time
- Relaxed Heaps: decreaseKey in $\mathbf{O (1)}$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $\mathrm{O}(\mathrm{n} \log \mathrm{n}+\mathrm{m})$ time. If $\mathbf{m}=\Omega(\mathbf{n} \log \mathbf{n})$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, add, delete, meld in $\mathbf{O}(\log n)$ time
- decreaseKey in $\mathbf{O}(\mathbf{1})$ amortized time: ℓ decreaseKey operations for $\ell \geq \mathbf{n}$ take together $\mathbf{O}(\ell)$ time
- Relaxed Heaps: decreaseKey in $\mathbf{O (1)}$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $\mathbf{O}(\mathbf{n} \log \mathbf{n}+\mathbf{m})$ time. If $\mathbf{m}=\Omega(\mathbf{n} \log \mathbf{n})$, running time is linear in input size.
- Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, add, delete, meld in $\mathbf{O}(\log n)$ time
- decreaseKey in $\mathbf{O}(\mathbf{1})$ amortized time: $\boldsymbol{\ell}$ decreaseKey operations for $\ell \geq \mathbf{n}$ take together $\mathbf{O}(\boldsymbol{\ell})$ time
- Relaxed Heaps: decreaseKey in $\mathbf{O (1)}$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $\mathbf{O}(\mathbf{n} \log \mathbf{n}+\mathbf{m})$ time. If $\mathbf{m}=\Omega(\mathbf{n} \log \mathbf{n})$, running time is linear in input size.
- Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)

Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from sto \mathbf{V}. Question: How do we find the paths themselves?

```
Q = makePQ()
insert(Q, (s,0))
prev(s) = null
for each node u }\not=\textrm{s}\mathrm{ do
    insert(Q, (u,\infty) )
    prev(u) = null
S=\emptyset
for i=1 to |V/ do
    (v,\operatorname{dist}(s,v)) = extractMin(Q)
    S = S U{v}
    for each u in Adj(v) do
        if (dist(s,v) + (v,u) < dist(s,u) ) then
        decreaseKey(Q, (u, dist(s,v) + \ell(v,u)) )
        prev(u) = v
```


Shortest Path Tree

Dijkstra's algorithm finds the shortest path distances from sto \mathbf{V}. Question: How do we find the paths themselves?

```
\(\mathbf{Q}=\operatorname{makePQ}()\)
insert ( \(\mathbf{Q},(\mathbf{s}, \mathbf{0})\) )
\(\operatorname{prev}(\mathrm{s})=\) null
for each node \(\mathbf{u} \neq \mathbf{s}\) do
    insert ( \(\mathbf{Q},(\mathbf{u}, \infty)\) )
    \(\operatorname{prev}(u)=\) null
\(S=\emptyset\)
for \(\mathbf{i}=1\) to \(|V|\) do
    \((\mathrm{v}, \operatorname{dist}(\mathrm{s}, \mathrm{v}))=\operatorname{extract} \operatorname{Min}(\mathrm{Q})\)
    \(\mathbf{S}=\mathbf{S} \cup\{v\}\)
    for each \(\mathbf{u}\) in \(\operatorname{Adj}(\mathbf{v})\) do
        if \((\operatorname{dist}(s, v)+\ell(v, u)<\operatorname{dist}(s, u))\) then
        \(\operatorname{decreaseKey}(\mathbf{Q},(\mathbf{u}, \operatorname{dist}(\mathbf{s}, \mathbf{v})+\ell(\mathbf{v}, \mathbf{u})))\)
        \(\operatorname{prev}(u)=v\)
```


Shortest Path Tree

Lemma

The edge set $(\mathbf{u}, \operatorname{prev}(\mathbf{u}))$ is the reverse of a shortest path tree rooted at \mathbf{s}. For each \mathbf{u}, the reverse of the path from \mathbf{u} to \mathbf{s} in the tree is a shortest path from \mathbf{s} to \mathbf{u}.

Proof Sketch.

- The edgeset $\{(\mathbf{u}, \operatorname{prev}(\mathbf{u})) \mid \mathbf{u} \in \mathbf{V}\}$ induces a directed in-tree rooted at s(Why?)
- Use induction on $|\mathbf{S}|$ to argue that the tree is a shortest path tree for nodes in \mathbf{V}.

Shortest paths to s

Dijkstra's algorithm gives shortest paths from \mathbf{s} to all nodes in \mathbf{V}.
How do we find shortest paths from all of \mathbf{V} to \mathbf{s} ?

- In undirected graphs shortest path from s to \mathbf{u} is a shortest path from \mathbf{u} to s so there is no need to distinguish.
- In directed granhs, use Diikstra's algorithm in $\mathbf{G}^{\text {avev }}$

Shortest paths to s

Dijkstra's algorithm gives shortest paths from \mathbf{s} to all nodes in \mathbf{V}.
How do we find shortest paths from all of \mathbf{V} to \mathbf{s} ?

- In undirected graphs shortest path from \mathbf{s} to \mathbf{u} is a shortest path from \mathbf{u} to \mathbf{s} so there is no need to distinguish.
- In directed graphs, use Dijkstra's algorithm in $\mathbf{G}^{\text {rev! }}$

Notes

Notes

Notes

Notes

[^0]: Proof.
 Suppose not. Then for some $\mathrm{i}<k$ there is a path \mathbf{P}^{\prime} from s to v_{i} of length strictly less than that of $\mathrm{s}=\mathrm{v}_{0} \rightarrow \mathbf{v}_{1} \rightarrow \ldots \rightarrow \mathbf{v}_{\mathrm{i}}$. Then P^{\prime} concatenated with $\mathrm{v}_{\mathrm{i}} \rightarrow \mathrm{v}_{\mathrm{i}+1} \ldots \rightarrow \mathrm{v}_{\mathrm{k}}$ contains a strictly shorter

