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Part I

Breadth First Search
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Breadth First Search (BFS)

Overview
(A) BFS is obtained from BasicSearch by processing edges using a

data structure called a queue.
(B) It processes the vertices in the graph in the order of their

shortest distance from the vertex s (the start vertex).

As such...
DFS good for exploring graph structure

BFS good for exploring distances
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Queue Data Structure

Queues
A queue is a list of elements which supports the following operations

enqueue: Adds an element to the end of the list

dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e.,
elements are picked in the order in which they were inserted.
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BFS Algorithm

Given (undirected or directed) graph G = (V, E) and node s ∈ V

BFS(s)
Mark all vertices as unvisited

Initialize search tree T to be empty

Mark vertex s as visited

set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T
Mark v as visited and enq(v)

Proposition

BFS(s) runs in O(n + m) time.
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BFS: An Example in Undirected Graphs
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1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.
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BFS: An Example in Directed Graphs

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E ), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug
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BFS with Distance

BFS(s)
Mark all vertices as unvisited and for each v set dist(v) =∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enq(v)
and set dist(v) = dist(u) + 1
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Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)
(A) The search tree contains exactly the set of vertices in the

connected component of s.
(B) If dist(u) < dist(v) then u is visited before v.
(C) For every vertex u, dist(u) is indeed the length of shortest path

from s to u.
(D) If u, v are in connected component of s and e = {u, v} is an

edge of G, then either e is an edge in the search tree, or
|dist(u)− dist(v)| ≤ 1.

Proof.
Exercise.
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Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable

from s
(B) If dist(u) < dist(v) then u is visited before v
(C) For every vertex u, dist(u) is indeed the length of shortest path

from s to u
(D) If u is reachable from s and e = (u, v) is an edge of G, then

either e is an edge in the search tree, or dist(v)− dist(u) ≤ 1.
Not necessarily the case that dist(u)− dist(v) ≤ 1.

Proof.
Exercise.
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BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

Sariel (UIUC) CS473 11 Spring 2011 11 / 49



BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

Sariel (UIUC) CS473 11 Spring 2011 11 / 49



Example
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BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).

BFSLayers(s) outputs a BFS tree

Li is the set of vertices at distance exactly i from s

If G is undirected, each edge e = {u, v} is one of three types:
tree edge between two consecutive layers
non-tree forward/backward edge between two consecutive
layers
non-tree cross-edge with both u, v in same layer
=⇒ Every edge in the graph is either between two vertices
that are either (i) in the same layer, or (ii) in two consecutive
layers.
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BFS with Layers: Properties
For directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if G
is directed.
For each edge e = (u, v) is one of four types:

a tree edge between consecutive layers, u ∈ Li, v ∈ Li+1 for
some i ≥ 0

a non-tree forward edge between consecutive layers

a non-tree backward edge

a cross-edge with both u, v in same layer
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Part II

Bipartite Graphs and an application of BFS
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Bipartite Graphs

Definition (Bipartite Graph)

Undirected graph G = (V, E) is a bipartite graph if V can be
partitioned into X and Y s.t. all edges in E are between X and Y.

X Y
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Bipartite Graph Characterization

Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.

Proof.
Root tree T at some node r. Let Li be all nodes at level i, that is, Li

is all nodes at distance i from root r. Now define X to be all nodes at
even levels and Y to be all nodes at odd level. Only edges in T are
between levels.

Proposition
An odd length cycle is not bipartite.
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Odd Cycles are not Bipartite

Proposition
An odd length cycle is not bipartite.

Proof.
Let C = u1, u2, . . . , u2k+1, u1 be an odd cycle. Suppose C is a
bipartite graph and let X, Y be the bipartition. Without loss of
generality u1 ∈ X. Implies u2 ∈ Y. Implies u3 ∈ X. Inductively,
ui ∈ X if i is odd ui ∈ Y if i is even. But {u1, u2k+1} is an edge and
both belong to X!
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Subgraphs

Definition
Given a graph G = (V, E) a subgraph of G is another graph
H = (V′, E′) where V′ ⊆ V and E′ ⊆ E.

Proposition
If G is bipartite then any subgraph H of G is also bipartite.

Proposition
A graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof.
If G is bipartite then since C is a subgraph, C is also bipartite (by
above proposition). However, C is not bipartite!
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Bipartite Graph Characterization

Theorem
A graph G is bipartite if and only if it has no odd length cycle as
subgraph.

Proof.
Only If: G has an odd cycle implies G is not bipartite.
If: G has no odd length cycle. Assume without loss of generality that
G is connected.

Pick u arbitrarily and do BFS(u)

X = ∪i is evenLi and Y = ∪i is oddLi

Claim: X and Y is a valid bipartition if G has no odd length
cycle.
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Proof of Claim

Claim
In BFS(u) if a, b ∈ Li and (a, b) is an edge then there is an odd
length cycle containing (a, b).

Proof.
Let v be least common ancestor of a, b in BFS tree T.
v is in some level j < i (could be u itself).
Path from v  a in T is of length j− i.
Path from v  b in T is of length j− i.
These two paths plus (a, b) forms an odd cycle of length
2(j− i) + 1.

Corollary

There is an O(n + m) time algorithm to check if G is bipartite and
output an odd cycle if it is not.Sariel (UIUC) CS473 21 Spring 2011 21 / 49
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Part III

Shortest Paths and Dijkstra’s Algorithm
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge

lengths (or costs). For edge e = (u, v), `(e) = `(u, v)
is its length.

Given nodes s, t find shortest path from s to t.

Given node s find shortest path from s to all other nodes.

Find shortest paths for all pairs of nodes.

Many applications!
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Single-Source Shortest Paths: Non-Negative Edge

Lengths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

Given nodes s, t find shortest path from s to t.

Given node s find shortest path from s to all other nodes.

Restrict attention to directed graphs
Undirected graph problem can be reduced to directed graph
problem - how?

Given undirected graph G, create a new directed graph G′ by
replacing each edge {u, v} in G by (u, v) and (v, u) in G′.
set `(u, v) = `(v, u) = `({u, v})
Exercise: show reduction works
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Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
Run BFS(s) to get shortest path distances from s to all other
nodes.
O(m + n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing
`(e)− 1 dummy nodes on e

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n)
nodes. BFS takes O(mL + n) time. Not efficient if L is large.
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Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma
Let G be a directed graph with non-negative edge lengths. Let
dist(s, v) denote the shortest path length from s to v. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk

then for 1 ≤ i < k:

s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

dist(s, vi) ≤ dist(s, vk).

Proof.
Suppose not. Then for some i < k there is a path P′ from s to vi of
length strictly less than that of s = v0 → v1 → . . .→ vi. Then P′

concatenated with vi → vi+1 . . .→ vk contains a strictly shorter
path to vk than s = v0 → v1 . . .→ vk.Sariel (UIUC) CS473 26 Spring 2011 26 / 49
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concatenated with vi → vi+1 . . .→ vk contains a strictly shorter
path to vk than s = v0 → v1 . . .→ vk.
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A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6
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A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

A shorter path
from v0 to v6. A
contradiction.

Sariel (UIUC) CS473 27 Spring 2011 27 / 49



A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, dist(s, v) =∞
Initialize S = ∅,
for i = 1 to |V| do

(* Invariant: S contains the i− 1 closest nodes to s *)

Among nodes in V \ S, find the node v that is the

ith closest to s
Update dist(s, v)
S = S ∪ {v}

How can we implement the step in the for loop?
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Finding the ith closest node

S contains the i− 1 closest nodes to s

Want to find the ith closest node from V − S.

What do we know about the ith closest node?

Claim
Let P be a shortest path from s to v where v is the ith closest node.
Then, all intermediate nodes in P belong to S.

Proof.
If P had an intermediate node u not in S then u will be closer to s
than v. Implies v is not the ith closest node to s - recall that S
already has the i− 1 closest nodes.
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Finding the ith closest node repeatedly
An example
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Finding the ith closest node
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Corollary
The ith closest node is adjacent to S.
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Finding the ith closest node

S contains the i− 1 closest nodes to s

Want to find the ith closest node from V − S.

For each u ∈ V − S let P(s, u, S) be a shortest path from s to
u using only nodes in S as intermediate vertices.

Let d′(s, u) be the length of P(s, u, S)

Observations: for each u ∈ V − S,

dist(s, u) ≤ d′(s, u) since we are constraining the paths

d′(s, u) = mina∈S(dist(s, a) + `(a, u)) - Why?

Lemma
If v is the ith closest node to s, then d′(s, v) = dist(s, v).
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Finding the ith closest node

Lemma
If v is an ith closest node to s, then d′(s, v) = dist(s, v).

Proof.
Let v be the ith closest node to s. Then there is a shortest path P
from s to v that contains only nodes in S as intermediate nodes (see
previous claim). Therefore d′(s, v) = dist(s, v).
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Finding the ith closest node

Lemma
If v is an ith closest node to s, then d′(s, v) = dist(s, v).

Corollary
The ith closest node to s is the node v ∈ V − S such that
d′(s, v) = minu∈V−S d′(s, u).

Proof.
For every node u ∈ V − S, dist(s, u) ≤ d′(s, u) and for the ith
closest node v, dist(s, v) = d′(s, v). Moreover,
dist(s, u) ≥ dist(s, v) for each u ∈ V − S.
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Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize S = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: S contains the i-1 closest nodes to s *)

(* Invariant: d’(s,u) is shortest path distance from u to s

using only S as intermediate nodes*)

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
for each node u in V \ S

compute d’(s,u) = mina∈S (dist(s, a) + `(a, u))

Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

n outer iterations. In each iteration, d′(s, u) for each u by
scanning all edges out of nodes in S; O(m + n) time/iteration.
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Improved Algorithm

Main work is to compute the d′(s, u) values in each iteration
d′(s, u) changes from iteration i to i + 1 only because of the
node v that is added to S in iteration i.

Initialize for each node v, dist(s, v) = d′(s, v) =∞
Initialize S = ∅, d’(s,s) = 0

for i = 1 to |V| do
// S contains the i− 1 closest nodes to s,
// and the values of d′(s, u) are current

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
Update d’(s,u) for each u in V-S as follows:

d′(s, u) = min(d′(s, u), dist(s, v) + `(v, u))

Running time: O(m + n2) time.
n outer iterations and in each iteration following steps
updating d′(s, u) after v added takes O(deg(v)) time so total
work is O(m) since a node enters S only once
Finding v from d′(s, u) values is O(n) time
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Dijkstra’s Algorithm

eliminate d′(s, u) and let dist(s, u) maintain it

update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize S = {s}, dist(s, s) = 0
for i = 1 to |V| do

Let v be such that dist(s, v) = minu∈V−S dist(s, u)
S = S ∪ {v}
for each u in Adj(v) do

dist(s, u) = min(dist(s, u), dist(s, v) + `(v, u))

Priority Queues to maintain dist values for faster running time

Using heaps and standard priority queues: O((m + n) log n)

Using Fibonacci heaps: O(m + n log n).
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Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations

makeQ: create an empty queue

findMin: find the minimum key in S

extractMin: Remove v ∈ S with smallest key and return it

add(v, k(v)): Add new element v with key k(v) to S

delete(v): Remove element v from S

decreaseKey(v, k’(v)): decrease key of v from k(v)
(current key) to k′(v) (new key). Assumption: k′(v) ≤ k(v)

meld: merge two separate priority queues into one

can be performed in O(log n) time each.
decreaseKey via delete and add
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Dijkstra’s Algorithm using Priority Queues

Q = makePQ()

insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,∞))

S = ∅
for i = 1 to |V| do

(v, dist(s, v)) = extractMin(Q)
S = S ∪ {v}
For each u in Adj(v) do

decreaseKey(Q, (u, min(dist(s, u), dist(s, v) + `(v, u))))

Priority Queue operations:

O(n) insert operations

O(n) extractMin operations

O(m) decreaseKey operations

Sariel (UIUC) CS473 40 Spring 2011 40 / 49



Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.
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Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

extractMin, add, delete, meld in O(log n) time

decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

— Dijkstra’s algorithm can be implemented in O(n log n + m) time.
If m = Ω(n log n), running time is linear in input size.
— Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)
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Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))
prev(s) = null
for each node u 6= s do

insert(Q, (u,∞) )

prev(u) = null

S = ∅
for i = 1 to |V| do

(v, dist(s, v)) = extractMin(Q)
S = S ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v, u) < dist(s, u) ) then
decreaseKey(Q, (u, dist(s, v) + `(v, u)) )

prev(u) = v
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Shortest Path Tree

Lemma
The edge set (u, prev(u)) is the reverse of a shortest path tree
rooted at s. For each u, the reverse of the path from u to s in the
tree is a shortest path from s to u.

Proof Sketch.
The edgeset {(u, prev(u)) | u ∈ V} induces a directed in-tree
rooted at s (Why?)

Use induction on |S| to argue that the tree is a shortest path
tree for nodes in V.
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Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

In undirected graphs shortest path from s to u is a shortest path
from u to s so there is no need to distinguish.

In directed graphs, use Dijkstra’s algorithm in Grev!
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