
CS 473: Fundamental Algorithms, Spring 2011

Breadth First Search,
Dijkstra’s Algorithm for
Shortest Paths
Lecture 3
January 25, 2011

Sariel (UIUC) CS473 1 Spring 2011 1 / 49

Part I

Breadth First Search

Sariel (UIUC) CS473 2 Spring 2011 2 / 49

Breadth First Search (BFS)

Overview
(A) BFS is obtained from BasicSearch by processing edges using a

data structure called a queue.
(B) It processes the vertices in the graph in the order of their

shortest distance from the vertex s (the start vertex).

As such...
DFS good for exploring graph structure

BFS good for exploring distances

Sariel (UIUC) CS473 3 Spring 2011 3 / 49

Queue Data Structure

Queues
A queue is a list of elements which supports the following operations

enqueue: Adds an element to the end of the list

dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e.,
elements are picked in the order in which they were inserted.

Sariel (UIUC) CS473 4 Spring 2011 4 / 49

BFS Algorithm

Given (undirected or directed) graph G = (V, E) and node s ∈ V

BFS(s)
Mark all vertices as unvisited

Initialize search tree T to be empty

Mark vertex s as visited

set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T
Mark v as visited and enq(v)

Proposition

BFS(s) runs in O(n + m) time.

Sariel (UIUC) CS473 5 Spring 2011 5 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Undirected Graphs

1

2 3

4 5

6

7

8

1

2 3

4 5

6

78

1. [1] 4. [4,5,7,8] 7. [8,6]
2. [2,3] 5. [5,7,8] 8. [6]
3. [3,4,5] 6. [7,8,6] 9. []

BFS tree is the set of black edges.

Sariel (UIUC) CS473 6 Spring 2011 6 / 49

BFS: An Example in Directed Graphs

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Sariel (UIUC) CS473 7 Spring 2011 7 / 49

BFS with Distance

BFS(s)
Mark all vertices as unvisited and for each v set dist(v) =∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enq(v)
and set dist(v) = dist(u) + 1

Sariel (UIUC) CS473 8 Spring 2011 8 / 49

Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)
(A) The search tree contains exactly the set of vertices in the

connected component of s.
(B) If dist(u) < dist(v) then u is visited before v.
(C) For every vertex u, dist(u) is indeed the length of shortest path

from s to u.
(D) If u, v are in connected component of s and e = {u, v} is an

edge of G, then either e is an edge in the search tree, or
|dist(u)− dist(v)| ≤ 1.

Proof.
Exercise.

Sariel (UIUC) CS473 9 Spring 2011 9 / 49

Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable

from s
(B) If dist(u) < dist(v) then u is visited before v
(C) For every vertex u, dist(u) is indeed the length of shortest path

from s to u
(D) If u is reachable from s and e = (u, v) is an edge of G, then

either e is an edge in the search tree, or dist(v)− dist(u) ≤ 1.
Not necessarily the case that dist(u)− dist(v) ≤ 1.

Proof.
Exercise.

Sariel (UIUC) CS473 10 Spring 2011 10 / 49

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

Sariel (UIUC) CS473 11 Spring 2011 11 / 49

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i + 1

Running time: O(n + m)

Sariel (UIUC) CS473 11 Spring 2011 11 / 49

Example

1

2 3

4 5

6

7

8

Sariel (UIUC) CS473 12 Spring 2011 12 / 49

BFS with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).

BFSLayers(s) outputs a BFS tree

Li is the set of vertices at distance exactly i from s

If G is undirected, each edge e = {u, v} is one of three types:
tree edge between two consecutive layers
non-tree forward/backward edge between two consecutive
layers
non-tree cross-edge with both u, v in same layer
=⇒ Every edge in the graph is either between two vertices
that are either (i) in the same layer, or (ii) in two consecutive
layers.

Sariel (UIUC) CS473 13 Spring 2011 13 / 49

BFS with Layers: Properties
For directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if G
is directed.
For each edge e = (u, v) is one of four types:

a tree edge between consecutive layers, u ∈ Li, v ∈ Li+1 for
some i ≥ 0

a non-tree forward edge between consecutive layers

a non-tree backward edge

a cross-edge with both u, v in same layer

Sariel (UIUC) CS473 14 Spring 2011 14 / 49

Part II

Bipartite Graphs and an application of BFS

Sariel (UIUC) CS473 15 Spring 2011 15 / 49

Bipartite Graphs

Definition (Bipartite Graph)

Undirected graph G = (V, E) is a bipartite graph if V can be
partitioned into X and Y s.t. all edges in E are between X and Y.

X Y

Sariel (UIUC) CS473 16 Spring 2011 16 / 49

Bipartite Graph Characterization

Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.

Proof.
Root tree T at some node r. Let Li be all nodes at level i, that is, Li

is all nodes at distance i from root r. Now define X to be all nodes at
even levels and Y to be all nodes at odd level. Only edges in T are
between levels.

Proposition
An odd length cycle is not bipartite.

Sariel (UIUC) CS473 17 Spring 2011 17 / 49

Bipartite Graph Characterization

Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.

Proof.
Root tree T at some node r. Let Li be all nodes at level i, that is, Li

is all nodes at distance i from root r. Now define X to be all nodes at
even levels and Y to be all nodes at odd level. Only edges in T are
between levels.

Proposition
An odd length cycle is not bipartite.

Sariel (UIUC) CS473 17 Spring 2011 17 / 49

Bipartite Graph Characterization

Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.

Proof.
Root tree T at some node r. Let Li be all nodes at level i, that is, Li

is all nodes at distance i from root r. Now define X to be all nodes at
even levels and Y to be all nodes at odd level. Only edges in T are
between levels.

Proposition
An odd length cycle is not bipartite.

Sariel (UIUC) CS473 17 Spring 2011 17 / 49

Bipartite Graph Characterization

Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.

Proof.
Root tree T at some node r. Let Li be all nodes at level i, that is, Li

is all nodes at distance i from root r. Now define X to be all nodes at
even levels and Y to be all nodes at odd level. Only edges in T are
between levels.

Proposition
An odd length cycle is not bipartite.

Sariel (UIUC) CS473 17 Spring 2011 17 / 49

Odd Cycles are not Bipartite

Proposition
An odd length cycle is not bipartite.

Proof.
Let C = u1, u2, . . . , u2k+1, u1 be an odd cycle. Suppose C is a
bipartite graph and let X, Y be the bipartition. Without loss of
generality u1 ∈ X. Implies u2 ∈ Y. Implies u3 ∈ X. Inductively,
ui ∈ X if i is odd ui ∈ Y if i is even. But {u1, u2k+1} is an edge and
both belong to X!

Sariel (UIUC) CS473 18 Spring 2011 18 / 49

Subgraphs

Definition
Given a graph G = (V, E) a subgraph of G is another graph
H = (V′, E′) where V′ ⊆ V and E′ ⊆ E.

Proposition
If G is bipartite then any subgraph H of G is also bipartite.

Proposition
A graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof.
If G is bipartite then since C is a subgraph, C is also bipartite (by
above proposition). However, C is not bipartite!

Sariel (UIUC) CS473 19 Spring 2011 19 / 49

Subgraphs

Definition
Given a graph G = (V, E) a subgraph of G is another graph
H = (V′, E′) where V′ ⊆ V and E′ ⊆ E.

Proposition
If G is bipartite then any subgraph H of G is also bipartite.

Proposition
A graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof.
If G is bipartite then since C is a subgraph, C is also bipartite (by
above proposition). However, C is not bipartite!

Sariel (UIUC) CS473 19 Spring 2011 19 / 49

Subgraphs

Definition
Given a graph G = (V, E) a subgraph of G is another graph
H = (V′, E′) where V′ ⊆ V and E′ ⊆ E.

Proposition
If G is bipartite then any subgraph H of G is also bipartite.

Proposition
A graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof.
If G is bipartite then since C is a subgraph, C is also bipartite (by
above proposition). However, C is not bipartite!

Sariel (UIUC) CS473 19 Spring 2011 19 / 49

Subgraphs

Definition
Given a graph G = (V, E) a subgraph of G is another graph
H = (V′, E′) where V′ ⊆ V and E′ ⊆ E.

Proposition
If G is bipartite then any subgraph H of G is also bipartite.

Proposition
A graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof.
If G is bipartite then since C is a subgraph, C is also bipartite (by
above proposition). However, C is not bipartite!

Sariel (UIUC) CS473 19 Spring 2011 19 / 49

Bipartite Graph Characterization

Theorem
A graph G is bipartite if and only if it has no odd length cycle as
subgraph.

Proof.
Only If: G has an odd cycle implies G is not bipartite.
If: G has no odd length cycle. Assume without loss of generality that
G is connected.

Pick u arbitrarily and do BFS(u)

X = ∪i is evenLi and Y = ∪i is oddLi

Claim: X and Y is a valid bipartition if G has no odd length
cycle.

Sariel (UIUC) CS473 20 Spring 2011 20 / 49

Bipartite Graph Characterization

Theorem
A graph G is bipartite if and only if it has no odd length cycle as
subgraph.

Proof.
Only If: G has an odd cycle implies G is not bipartite.
If: G has no odd length cycle. Assume without loss of generality that
G is connected.

Pick u arbitrarily and do BFS(u)

X = ∪i is evenLi and Y = ∪i is oddLi

Claim: X and Y is a valid bipartition if G has no odd length
cycle.

Sariel (UIUC) CS473 20 Spring 2011 20 / 49

Proof of Claim

Claim
In BFS(u) if a, b ∈ Li and (a, b) is an edge then there is an odd
length cycle containing (a, b).

Proof.
Let v be least common ancestor of a, b in BFS tree T.
v is in some level j < i (could be u itself).
Path from v a in T is of length j− i.
Path from v b in T is of length j− i.
These two paths plus (a, b) forms an odd cycle of length
2(j− i) + 1.

Corollary

There is an O(n + m) time algorithm to check if G is bipartite and
output an odd cycle if it is not.Sariel (UIUC) CS473 21 Spring 2011 21 / 49

Proof of Claim

Claim
In BFS(u) if a, b ∈ Li and (a, b) is an edge then there is an odd
length cycle containing (a, b).

Proof.
Let v be least common ancestor of a, b in BFS tree T.
v is in some level j < i (could be u itself).
Path from v a in T is of length j− i.
Path from v b in T is of length j− i.
These two paths plus (a, b) forms an odd cycle of length
2(j− i) + 1.

Corollary

There is an O(n + m) time algorithm to check if G is bipartite and
output an odd cycle if it is not.Sariel (UIUC) CS473 21 Spring 2011 21 / 49

Proof of Claim

Claim
In BFS(u) if a, b ∈ Li and (a, b) is an edge then there is an odd
length cycle containing (a, b).

Proof.
Let v be least common ancestor of a, b in BFS tree T.
v is in some level j < i (could be u itself).
Path from v a in T is of length j− i.
Path from v b in T is of length j− i.
These two paths plus (a, b) forms an odd cycle of length
2(j− i) + 1.

Corollary

There is an O(n + m) time algorithm to check if G is bipartite and
output an odd cycle if it is not.Sariel (UIUC) CS473 21 Spring 2011 21 / 49

Part III

Shortest Paths and Dijkstra’s Algorithm

Sariel (UIUC) CS473 22 Spring 2011 22 / 49

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge

lengths (or costs). For edge e = (u, v), `(e) = `(u, v)
is its length.

Given nodes s, t find shortest path from s to t.

Given node s find shortest path from s to all other nodes.

Find shortest paths for all pairs of nodes.

Many applications!

Sariel (UIUC) CS473 23 Spring 2011 23 / 49

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge

lengths (or costs). For edge e = (u, v), `(e) = `(u, v)
is its length.

Given nodes s, t find shortest path from s to t.

Given node s find shortest path from s to all other nodes.

Find shortest paths for all pairs of nodes.

Many applications!

Sariel (UIUC) CS473 23 Spring 2011 23 / 49

Single-Source Shortest Paths: Non-Negative Edge

Lengths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

Given nodes s, t find shortest path from s to t.

Given node s find shortest path from s to all other nodes.

Restrict attention to directed graphs
Undirected graph problem can be reduced to directed graph
problem - how?

Given undirected graph G, create a new directed graph G′ by
replacing each edge {u, v} in G by (u, v) and (v, u) in G′.
set `(u, v) = `(v, u) = `({u, v})
Exercise: show reduction works

Sariel (UIUC) CS473 24 Spring 2011 24 / 49

Single-Source Shortest Paths: Non-Negative Edge

Lengths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

Given nodes s, t find shortest path from s to t.

Given node s find shortest path from s to all other nodes.

Restrict attention to directed graphs
Undirected graph problem can be reduced to directed graph
problem - how?

Given undirected graph G, create a new directed graph G′ by
replacing each edge {u, v} in G by (u, v) and (v, u) in G′.
set `(u, v) = `(v, u) = `({u, v})
Exercise: show reduction works

Sariel (UIUC) CS473 24 Spring 2011 24 / 49

Single-Source Shortest Paths: Non-Negative Edge

Lengths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

Given nodes s, t find shortest path from s to t.

Given node s find shortest path from s to all other nodes.

Restrict attention to directed graphs
Undirected graph problem can be reduced to directed graph
problem - how?

Given undirected graph G, create a new directed graph G′ by
replacing each edge {u, v} in G by (u, v) and (v, u) in G′.
set `(u, v) = `(v, u) = `({u, v})
Exercise: show reduction works

Sariel (UIUC) CS473 24 Spring 2011 24 / 49

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
Run BFS(s) to get shortest path distances from s to all other
nodes.
O(m + n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing
`(e)− 1 dummy nodes on e

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n)
nodes. BFS takes O(mL + n) time. Not efficient if L is large.

Sariel (UIUC) CS473 25 Spring 2011 25 / 49

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
Run BFS(s) to get shortest path distances from s to all other
nodes.
O(m + n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing
`(e)− 1 dummy nodes on e

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n)
nodes. BFS takes O(mL + n) time. Not efficient if L is large.

Sariel (UIUC) CS473 25 Spring 2011 25 / 49

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
Run BFS(s) to get shortest path distances from s to all other
nodes.
O(m + n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing
`(e)− 1 dummy nodes on e

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n)
nodes. BFS takes O(mL + n) time. Not efficient if L is large.

Sariel (UIUC) CS473 25 Spring 2011 25 / 49

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
Run BFS(s) to get shortest path distances from s to all other
nodes.
O(m + n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing
`(e)− 1 dummy nodes on e

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n)
nodes. BFS takes O(mL + n) time. Not efficient if L is large.

Sariel (UIUC) CS473 25 Spring 2011 25 / 49

Single-Source Shortest Paths via BFS

Special case: All edge lengths are 1.
Run BFS(s) to get shortest path distances from s to all other
nodes.
O(m + n) time algorithm.

Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing
`(e)− 1 dummy nodes on e

Let L = maxe `(e). New graph has O(mL) edges and O(mL + n)
nodes. BFS takes O(mL + n) time. Not efficient if L is large.

Sariel (UIUC) CS473 25 Spring 2011 25 / 49

Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma
Let G be a directed graph with non-negative edge lengths. Let
dist(s, v) denote the shortest path length from s to v. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk

then for 1 ≤ i < k:

s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

dist(s, vi) ≤ dist(s, vk).

Proof.
Suppose not. Then for some i < k there is a path P′ from s to vi of
length strictly less than that of s = v0 → v1 → . . .→ vi. Then P′

concatenated with vi → vi+1 . . .→ vk contains a strictly shorter
path to vk than s = v0 → v1 . . .→ vk.Sariel (UIUC) CS473 26 Spring 2011 26 / 49

Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma
Let G be a directed graph with non-negative edge lengths. Let
dist(s, v) denote the shortest path length from s to v. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk

then for 1 ≤ i < k:

s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

dist(s, vi) ≤ dist(s, vk).

Proof.
Suppose not. Then for some i < k there is a path P′ from s to vi of
length strictly less than that of s = v0 → v1 → . . .→ vi. Then P′

concatenated with vi → vi+1 . . .→ vk contains a strictly shorter
path to vk than s = v0 → v1 . . .→ vk.Sariel (UIUC) CS473 26 Spring 2011 26 / 49

Towards an algorithm

Why does BFS work?
BFS(s) explores nodes in increasing distance from s

Lemma
Let G be a directed graph with non-negative edge lengths. Let
dist(s, v) denote the shortest path length from s to v. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk

then for 1 ≤ i < k:

s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

dist(s, vi) ≤ dist(s, vk).

Proof.
Suppose not. Then for some i < k there is a path P′ from s to vi of
length strictly less than that of s = v0 → v1 → . . .→ vi. Then P′

concatenated with vi → vi+1 . . .→ vk contains a strictly shorter
path to vk than s = v0 → v1 . . .→ vk.Sariel (UIUC) CS473 26 Spring 2011 26 / 49

Towards an algorithm

Lemma
Let G be a directed graph with non-negative edge lengths. Let
dist(s, v) denote the shortest path length from s to v. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk

then for 1 ≤ i < k:

s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi

dist(s, vi) ≤ dist(s, vk).

Proof.
Suppose not. Then for some i < k there is a path P′ from s to vi of
length strictly less than that of s = v0 → v1 → . . .→ vi. Then P′

concatenated with vi → vi+1 . . .→ vk contains a strictly shorter
path to vk than s = v0 → v1 . . .→ vk.

Sariel (UIUC) CS473 26 Spring 2011 26 / 49

A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

Sariel (UIUC) CS473 27 Spring 2011 27 / 49

A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

Shorter path
from v0 to v4

Sariel (UIUC) CS473 27 Spring 2011 27 / 49

A proof by picture

s = v0

v1

v2

v3

v4

v5

v6

Shortest path
from v0 to v6

A shorter path
from v0 to v6. A
contradiction.

Sariel (UIUC) CS473 27 Spring 2011 27 / 49

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, dist(s, v) =∞
Initialize S = ∅,
for i = 1 to |V| do

(* Invariant: S contains the i− 1 closest nodes to s *)

Among nodes in V \ S, find the node v that is the

ith closest to s
Update dist(s, v)
S = S ∪ {v}

How can we implement the step in the for loop?

Sariel (UIUC) CS473 28 Spring 2011 28 / 49

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, dist(s, v) =∞
Initialize S = ∅,
for i = 1 to |V| do

(* Invariant: S contains the i− 1 closest nodes to s *)

Among nodes in V \ S, find the node v that is the

ith closest to s
Update dist(s, v)
S = S ∪ {v}

How can we implement the step in the for loop?

Sariel (UIUC) CS473 28 Spring 2011 28 / 49

Finding the ith closest node

S contains the i− 1 closest nodes to s

Want to find the ith closest node from V − S.

What do we know about the ith closest node?

Claim
Let P be a shortest path from s to v where v is the ith closest node.
Then, all intermediate nodes in P belong to S.

Proof.
If P had an intermediate node u not in S then u will be closer to s
than v. Implies v is not the ith closest node to s - recall that S
already has the i− 1 closest nodes.

Sariel (UIUC) CS473 29 Spring 2011 29 / 49

Finding the ith closest node

S contains the i− 1 closest nodes to s

Want to find the ith closest node from V − S.

What do we know about the ith closest node?

Claim
Let P be a shortest path from s to v where v is the ith closest node.
Then, all intermediate nodes in P belong to S.

Proof.
If P had an intermediate node u not in S then u will be closer to s
than v. Implies v is not the ith closest node to s - recall that S
already has the i− 1 closest nodes.

Sariel (UIUC) CS473 29 Spring 2011 29 / 49

Finding the ith closest node

S contains the i− 1 closest nodes to s

Want to find the ith closest node from V − S.

What do we know about the ith closest node?

Claim
Let P be a shortest path from s to v where v is the ith closest node.
Then, all intermediate nodes in P belong to S.

Proof.
If P had an intermediate node u not in S then u will be closer to s
than v. Implies v is not the ith closest node to s - recall that S
already has the i− 1 closest nodes.

Sariel (UIUC) CS473 29 Spring 2011 29 / 49

Finding the ith closest node repeatedly
An example

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

f

g

h

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

0

f

g

h

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

f

g

h

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

f

g

h

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19
f

g

h

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

f

g

h

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

36

f

g

h

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node repeatedly
An example

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

36

38

f

g

h

Sariel (UIUC) CS473 30 Spring 2011 30 / 49

Finding the ith closest node

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

Corollary
The ith closest node is adjacent to S.

Sariel (UIUC) CS473 31 Spring 2011 31 / 49

Finding the ith closest node

S contains the i− 1 closest nodes to s

Want to find the ith closest node from V − S.

For each u ∈ V − S let P(s, u, S) be a shortest path from s to
u using only nodes in S as intermediate vertices.

Let d′(s, u) be the length of P(s, u, S)

Observations: for each u ∈ V − S,

dist(s, u) ≤ d′(s, u) since we are constraining the paths

d′(s, u) = mina∈S(dist(s, a) + `(a, u)) - Why?

Lemma
If v is the ith closest node to s, then d′(s, v) = dist(s, v).

Sariel (UIUC) CS473 32 Spring 2011 32 / 49

Finding the ith closest node

S contains the i− 1 closest nodes to s

Want to find the ith closest node from V − S.

For each u ∈ V − S let P(s, u, S) be a shortest path from s to
u using only nodes in S as intermediate vertices.

Let d′(s, u) be the length of P(s, u, S)

Observations: for each u ∈ V − S,

dist(s, u) ≤ d′(s, u) since we are constraining the paths

d′(s, u) = mina∈S(dist(s, a) + `(a, u)) - Why?

Lemma
If v is the ith closest node to s, then d′(s, v) = dist(s, v).

Sariel (UIUC) CS473 32 Spring 2011 32 / 49

Finding the ith closest node

S contains the i− 1 closest nodes to s

Want to find the ith closest node from V − S.

For each u ∈ V − S let P(s, u, S) be a shortest path from s to
u using only nodes in S as intermediate vertices.

Let d′(s, u) be the length of P(s, u, S)

Observations: for each u ∈ V − S,

dist(s, u) ≤ d′(s, u) since we are constraining the paths

d′(s, u) = mina∈S(dist(s, a) + `(a, u)) - Why?

Lemma
If v is the ith closest node to s, then d′(s, v) = dist(s, v).

Sariel (UIUC) CS473 32 Spring 2011 32 / 49

Finding the ith closest node

Lemma
If v is an ith closest node to s, then d′(s, v) = dist(s, v).

Proof.
Let v be the ith closest node to s. Then there is a shortest path P
from s to v that contains only nodes in S as intermediate nodes (see
previous claim). Therefore d′(s, v) = dist(s, v).

Sariel (UIUC) CS473 33 Spring 2011 33 / 49

Finding the ith closest node

Lemma
If v is an ith closest node to s, then d′(s, v) = dist(s, v).

Corollary
The ith closest node to s is the node v ∈ V − S such that
d′(s, v) = minu∈V−S d′(s, u).

Proof.
For every node u ∈ V − S, dist(s, u) ≤ d′(s, u) and for the ith
closest node v, dist(s, v) = d′(s, v). Moreover,
dist(s, u) ≥ dist(s, v) for each u ∈ V − S.

Sariel (UIUC) CS473 34 Spring 2011 34 / 49

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize S = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: S contains the i-1 closest nodes to s *)

(* Invariant: d’(s,u) is shortest path distance from u to s

using only S as intermediate nodes*)

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
for each node u in V \ S

compute d’(s,u) = mina∈S (dist(s, a) + `(a, u))

Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

n outer iterations. In each iteration, d′(s, u) for each u by
scanning all edges out of nodes in S; O(m + n) time/iteration.

Sariel (UIUC) CS473 35 Spring 2011 35 / 49

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize S = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: S contains the i-1 closest nodes to s *)

(* Invariant: d’(s,u) is shortest path distance from u to s

using only S as intermediate nodes*)

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
for each node u in V \ S

compute d’(s,u) = mina∈S (dist(s, a) + `(a, u))

Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

n outer iterations. In each iteration, d′(s, u) for each u by
scanning all edges out of nodes in S; O(m + n) time/iteration.

Sariel (UIUC) CS473 35 Spring 2011 35 / 49

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize S = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: S contains the i-1 closest nodes to s *)

(* Invariant: d’(s,u) is shortest path distance from u to s

using only S as intermediate nodes*)

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
for each node u in V \ S

compute d’(s,u) = mina∈S (dist(s, a) + `(a, u))

Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

n outer iterations. In each iteration, d′(s, u) for each u by
scanning all edges out of nodes in S; O(m + n) time/iteration.

Sariel (UIUC) CS473 35 Spring 2011 35 / 49

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize S = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: S contains the i-1 closest nodes to s *)

(* Invariant: d’(s,u) is shortest path distance from u to s

using only S as intermediate nodes*)

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
for each node u in V \ S

compute d’(s,u) = mina∈S (dist(s, a) + `(a, u))

Correctness: By induction on i using previous lemmas.
Running time: O(n · (n + m)) time.

n outer iterations. In each iteration, d′(s, u) for each u by
scanning all edges out of nodes in S; O(m + n) time/iteration.

Sariel (UIUC) CS473 35 Spring 2011 35 / 49

Example

s

2 3

4

5

6

7 t

9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9 19

36

25

6

13 38

9

13

6

10

11
6

25

Sariel (UIUC) CS473 36 Spring 2011 36 / 49

Example

s

2 3

4

5

6

7 t

9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9 19

36

25

6

13 38

9

13

6

10

11
6

25

Sariel (UIUC) CS473 36 Spring 2011 36 / 49

Example

s

2 3

4

5

6

7 t

9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9 19

36

25

6

13 38

9

13

6

10

11
6

25

Sariel (UIUC) CS473 36 Spring 2011 36 / 49

Example

s

2 3

4

5

6

7 t

9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9 19

36

25

6

13 38

9

13

6

10

11
6

25

Sariel (UIUC) CS473 36 Spring 2011 36 / 49

Example

s

2 3

4

5

6

7 t

9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9 19

36

25

6

13 38

9

13

6

10

11
6

25

Sariel (UIUC) CS473 36 Spring 2011 36 / 49

Example

s

2 3

4

5

6

7 t

9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9 19

36

25

6

13 38

9

13

6

10

11
6

25

Sariel (UIUC) CS473 36 Spring 2011 36 / 49

Example

s

2 3

4

5

6

7 t

9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9 19

36

25

6

13 38

9

13

6

10

11
6

25

Sariel (UIUC) CS473 36 Spring 2011 36 / 49

Example

s

2 3

4

5

6

7 t

9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9 19

36

25

6

13 38

9

13

6

10

11
6

25

Sariel (UIUC) CS473 36 Spring 2011 36 / 49

Improved Algorithm

Main work is to compute the d′(s, u) values in each iteration
d′(s, u) changes from iteration i to i + 1 only because of the
node v that is added to S in iteration i.

Initialize for each node v, dist(s, v) = d′(s, v) =∞
Initialize S = ∅, d’(s,s) = 0

for i = 1 to |V| do
// S contains the i− 1 closest nodes to s,
// and the values of d′(s, u) are current

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
Update d’(s,u) for each u in V-S as follows:

d′(s, u) = min(d′(s, u), dist(s, v) + `(v, u))

Running time: O(m + n2) time.
n outer iterations and in each iteration following steps
updating d′(s, u) after v added takes O(deg(v)) time so total
work is O(m) since a node enters S only once
Finding v from d′(s, u) values is O(n) time

Sariel (UIUC) CS473 37 Spring 2011 37 / 49

Improved Algorithm

Main work is to compute the d′(s, u) values in each iteration
d′(s, u) changes from iteration i to i + 1 only because of the
node v that is added to S in iteration i.

Initialize for each node v, dist(s, v) = d′(s, v) =∞
Initialize S = ∅, d’(s,s) = 0

for i = 1 to |V| do
// S contains the i− 1 closest nodes to s,
// and the values of d′(s, u) are current

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
Update d’(s,u) for each u in V-S as follows:

d′(s, u) = min(d′(s, u), dist(s, v) + `(v, u))

Running time: O(m + n2) time.
n outer iterations and in each iteration following steps
updating d′(s, u) after v added takes O(deg(v)) time so total
work is O(m) since a node enters S only once
Finding v from d′(s, u) values is O(n) time

Sariel (UIUC) CS473 37 Spring 2011 37 / 49

Improved Algorithm

Initialize for each node v, dist(s, v) = d′(s, v) =∞
Initialize S = ∅, d’(s,s) = 0

for i = 1 to |V| do
// S contains the i− 1 closest nodes to s,
// and the values of d′(s, u) are current

Let v be such that d’(s,v) = minu∈V−S d’(s,u)

dist(s, v) = d′(s, v)
S = S ∪ {v}
Update d’(s,u) for each u in V-S as follows:

d′(s, u) = min(d′(s, u), dist(s, v) + `(v, u))

Running time: O(m + n2) time.

n outer iterations and in each iteration following steps

updating d′(s, u) after v added takes O(deg(v)) time so total
work is O(m) since a node enters S only once

Finding v from d′(s, u) values is O(n) time
Sariel (UIUC) CS473 37 Spring 2011 37 / 49

Dijkstra’s Algorithm

eliminate d′(s, u) and let dist(s, u) maintain it

update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize S = {s}, dist(s, s) = 0
for i = 1 to |V| do

Let v be such that dist(s, v) = minu∈V−S dist(s, u)
S = S ∪ {v}
for each u in Adj(v) do

dist(s, u) = min(dist(s, u), dist(s, v) + `(v, u))

Priority Queues to maintain dist values for faster running time

Using heaps and standard priority queues: O((m + n) log n)

Using Fibonacci heaps: O(m + n log n).

Sariel (UIUC) CS473 38 Spring 2011 38 / 49

Dijkstra’s Algorithm

eliminate d′(s, u) and let dist(s, u) maintain it

update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s, v) =∞
Initialize S = {s}, dist(s, s) = 0
for i = 1 to |V| do

Let v be such that dist(s, v) = minu∈V−S dist(s, u)
S = S ∪ {v}
for each u in Adj(v) do

dist(s, u) = min(dist(s, u), dist(s, v) + `(v, u))

Priority Queues to maintain dist values for faster running time

Using heaps and standard priority queues: O((m + n) log n)

Using Fibonacci heaps: O(m + n log n).

Sariel (UIUC) CS473 38 Spring 2011 38 / 49

Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations

makeQ: create an empty queue

findMin: find the minimum key in S

extractMin: Remove v ∈ S with smallest key and return it

add(v, k(v)): Add new element v with key k(v) to S

delete(v): Remove element v from S

decreaseKey(v, k’(v)): decrease key of v from k(v)
(current key) to k′(v) (new key). Assumption: k′(v) ≤ k(v)

meld: merge two separate priority queues into one

can be performed in O(log n) time each.
decreaseKey via delete and add

Sariel (UIUC) CS473 39 Spring 2011 39 / 49

Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations

makeQ: create an empty queue

findMin: find the minimum key in S

extractMin: Remove v ∈ S with smallest key and return it

add(v, k(v)): Add new element v with key k(v) to S

delete(v): Remove element v from S

decreaseKey(v, k’(v)): decrease key of v from k(v)
(current key) to k′(v) (new key). Assumption: k′(v) ≤ k(v)

meld: merge two separate priority queues into one

can be performed in O(log n) time each.
decreaseKey via delete and add

Sariel (UIUC) CS473 39 Spring 2011 39 / 49

Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations

makeQ: create an empty queue

findMin: find the minimum key in S

extractMin: Remove v ∈ S with smallest key and return it

add(v, k(v)): Add new element v with key k(v) to S

delete(v): Remove element v from S

decreaseKey(v, k’(v)): decrease key of v from k(v)
(current key) to k′(v) (new key). Assumption: k′(v) ≤ k(v)

meld: merge two separate priority queues into one

can be performed in O(log n) time each.
decreaseKey via delete and add

Sariel (UIUC) CS473 39 Spring 2011 39 / 49

Dijkstra’s Algorithm using Priority Queues

Q = makePQ()

insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,∞))

S = ∅
for i = 1 to |V| do

(v, dist(s, v)) = extractMin(Q)
S = S ∪ {v}
For each u in Adj(v) do

decreaseKey(Q, (u, min(dist(s, u), dist(s, v) + `(v, u))))

Priority Queue operations:

O(n) insert operations

O(n) extractMin operations

O(m) decreaseKey operations

Sariel (UIUC) CS473 40 Spring 2011 40 / 49

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.

Sariel (UIUC) CS473 41 Spring 2011 41 / 49

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.

Sariel (UIUC) CS473 41 Spring 2011 41 / 49

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

extractMin, add, delete, meld in O(log n) time

decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

— Dijkstra’s algorithm can be implemented in O(n log n + m) time.
If m = Ω(n log n), running time is linear in input size.
— Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

Sariel (UIUC) CS473 42 Spring 2011 42 / 49

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

extractMin, add, delete, meld in O(log n) time

decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

— Dijkstra’s algorithm can be implemented in O(n log n + m) time.
If m = Ω(n log n), running time is linear in input size.
— Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

Sariel (UIUC) CS473 42 Spring 2011 42 / 49

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

extractMin, add, delete, meld in O(log n) time

decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

— Dijkstra’s algorithm can be implemented in O(n log n + m) time.
If m = Ω(n log n), running time is linear in input size.
— Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

Sariel (UIUC) CS473 42 Spring 2011 42 / 49

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

extractMin, add, delete, meld in O(log n) time

decreaseKey in O(1) amortized time: ` decreaseKey
operations for ` ≥ n take together O(`) time

Relaxed Heaps: decreaseKey in O(1) worst case time but at
the expense of meld (not necessary for Dijkstra’s algorithm)

— Dijkstra’s algorithm can be implemented in O(n log n + m) time.
If m = Ω(n log n), running time is linear in input size.
— Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps
(European Symposium on Algorithms, September 2009!)

Sariel (UIUC) CS473 42 Spring 2011 42 / 49

Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))
prev(s) = null
for each node u 6= s do

insert(Q, (u,∞))

prev(u) = null

S = ∅
for i = 1 to |V| do

(v, dist(s, v)) = extractMin(Q)
S = S ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v, u) < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + `(v, u)))

prev(u) = v

Sariel (UIUC) CS473 43 Spring 2011 43 / 49

Shortest Path Tree

Dijkstra’s algorithm finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s, 0))
prev(s) = null
for each node u 6= s do

insert(Q, (u,∞))

prev(u) = null

S = ∅
for i = 1 to |V| do

(v, dist(s, v)) = extractMin(Q)
S = S ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v, u) < dist(s, u)) then
decreaseKey(Q, (u, dist(s, v) + `(v, u)))

prev(u) = v

Sariel (UIUC) CS473 43 Spring 2011 43 / 49

Shortest Path Tree

Lemma
The edge set (u, prev(u)) is the reverse of a shortest path tree
rooted at s. For each u, the reverse of the path from u to s in the
tree is a shortest path from s to u.

Proof Sketch.
The edgeset {(u, prev(u)) | u ∈ V} induces a directed in-tree
rooted at s (Why?)

Use induction on |S| to argue that the tree is a shortest path
tree for nodes in V.

Sariel (UIUC) CS473 44 Spring 2011 44 / 49

Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

In undirected graphs shortest path from s to u is a shortest path
from u to s so there is no need to distinguish.

In directed graphs, use Dijkstra’s algorithm in Grev!

Sariel (UIUC) CS473 45 Spring 2011 45 / 49

Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

In undirected graphs shortest path from s to u is a shortest path
from u to s so there is no need to distinguish.

In directed graphs, use Dijkstra’s algorithm in Grev!

Sariel (UIUC) CS473 45 Spring 2011 45 / 49

Notes

Sariel (UIUC) CS473 46 Spring 2011 46 / 49

Notes

Sariel (UIUC) CS473 47 Spring 2011 47 / 49

Notes

Sariel (UIUC) CS473 48 Spring 2011 48 / 49

Notes

Sariel (UIUC) CS473 49 Spring 2011 49 / 49

