cs473 Algorithms

Problem Set \#8

All problems are of equal value.

1. Consider the linear program Π defined by

$$
\begin{aligned}
\max 2 x+y & \\
x+2 y & \leq 12, \\
-x+3 y & \leq 9, \\
2 x-3 y & \leq 8, \\
x, y & \geq 0
\end{aligned}
$$

(a) Define a vertex to be a point (x, y) that is both feasible, and makes two of the linear inequalities into equalities. For example, $(0,0)$ is a vertex because it is feasible and meets the constraints $x \geq 0$ and $y \geq 0$ with equality.
Give a list of all vertices of Π, with a proof of correctness.
(b) Draw P as a subset of \mathbb{R}^{2}.
(c) Derive the dual \amalg to Π.
(d) As the dual \amalg is in three variables, a vertex of this system of constraints now asks for three of the inequalities to be met. Give a list of all vertices, with a proof of correctness.
(e) Solve Π by providing a primal feasible point and a dual feasible point witnessing that $|\Pi|=|\amalg|$.
2. Minimum-cost circulation. Erickson Chapter H, Problem \#3.
3. Large squares and rectangles. Erickson Chapter H, Problem \#4 (a),(b),(d) only.

