cs473 Algorithms

Problem Set #7

Prof. Michael A. Forbes

Due: Fri., 2024-03-29 17:00

All problems are of equal value.

- 1. (Multiplicative Chernoff Bound). Let X_1, \ldots, X_n be independent random variables taking values over the continuous real interval [0, 1], where we do not assume they are identically distributed. Let $X = \sum_i X_i$. Show the following.
 - (a) For $r \in (-\infty, \ln 2]$, prove that $\mathbb{E}[e^{rX}] \leq e^{r\mathbb{E}[X]+r^2\mathbb{E}[X]}$, where you may use (without proof) that $1 + z \leq e^z$ for all $z \in \mathbb{R}$, and $e^z \leq 1 + z + z^2$ for $z \leq \ln 2$.
 - (b) Explain how the above used the independence of the X_i .
 - (c) Apply Markov's inequality $(\Pr[Y \ge a] \le \mathbb{E}[Y]/a)$ to e^{rX} , and optimize over r, to conclude that:
 - i. For $0 \le \epsilon \le \ln 4$, $\Pr[\mathsf{X} \ge (1+\epsilon)\mathbb{E}[\mathsf{X}]] \le e^{-\epsilon^2 \mathbb{E}[\mathsf{X}]/4}$.
 - ii. For $\epsilon \geq \ln 4$, $\Pr[\mathsf{X} \geq (1+\epsilon)\mathbb{E}[\mathsf{X}]] \leq 2^{-\epsilon\mathbb{E}[\mathsf{X}]/2}$.
 - iii. For $0 \le \epsilon \le 1$, $\Pr[\mathsf{X} \le (1 \epsilon)\mathbb{E}[\mathsf{X}]] \le e^{-\epsilon^2 \mathbb{E}[\mathsf{X}]/4}$.
 - iv. (Additive Chernoff Bound) For $\epsilon \geq 0$, $\Pr[|\mathsf{X} \mathbb{E}[\mathsf{X}]| \geq \epsilon \cdot n] \leq 2e^{-\epsilon^2 n/4}$.
 - (d) Suppose now you have *m* independent identically random variables Y_1, \ldots, Y_m over $\{0, 1\}$, where each for each Y_i , $\Pr[Y_i = 1] = \frac{\lg m}{m}$. Define $Y = \sum_i Y_i$. Bound the tail probability $\Pr[Y \ge 2\mathbb{E}[Y]]$, using both (i) and (iv) above, and compare these bounds.

Note: The above omits one range of parameters, where one can show that $\Pr[X \ge (1+\epsilon)\mathbb{E}[X]] \le e^{-(1+\epsilon)\ln(1+\epsilon)\mathbb{E}[X]/4}$ if $\epsilon \ge 1$.

- 2. Balls and Bins. Kleinberg-Tardos Chapter 13, Problem #13.
- 3. In lecture we saw the random contraction algorithm for computing a global min-cut for undirected (and unweighted) graphs. In particular, we saw that if C is a minimum cut then the probability one round of random contraction will output C is $\geq 1/\binom{n}{2}$. This problem will explore the ability of the algorithm to output *almost* minimum cuts.

Let $k \ge 1$ be an integer, and suppose \hat{C} is a k-min-cut, in that \hat{C} has value $|\hat{C}| \le k \min_C |C|$.

- (a) Prove that after n-2k randomly contracted edges, the probability the cut \hat{C} has survived (that is, none of its edges have been contracted) is at least $\frac{1}{\binom{n}{2}}$.
- (b) Suppose we modify the algorithm, so that after the first n 2k contractions, we output a random cut from the contracted graph. Prove that \hat{C} is output with probability $\geq \frac{1}{2^{2k} \binom{n}{2k}}$.
- *Hint:* what is an upper bound for the number of cuts in the contracted graph?
- (c) Conclude that there are at most $O(n^{2k})$ k-minimum cuts.