cs473 Algorithms

Problem Set \#7

Due: Fri., 2024-03-29 17:00

All problems are of equal value.

1. (Multiplicative Chernoff Bound). Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ be independent random variables taking values over the continuous real interval $[0,1]$, where we do not assume they are identically distributed. Let $\mathrm{X}=\sum_{i} \mathrm{X}_{i}$. Show the following.
(a) For $r \in(-\infty, \ln 2]$, prove that $\mathbb{E}\left[\mathrm{e}^{r \mathrm{X}}\right] \leq \mathrm{e}^{r \mathbb{E}[\mathrm{X}]+r^{2} \mathbb{E}[\mathrm{X}]}$, where you may use (without proof) that $1+z \leq \mathrm{e}^{z}$ for all $z \in \mathbb{R}$, and $\mathrm{e}^{z} \leq 1+z+z^{2}$ for $z \leq \ln 2$.
(b) Explain how the above used the independence of the X_{i}.
(c) Apply Markov's inequality $(\operatorname{Pr}[\mathrm{Y} \geq a] \leq \mathbb{E}[\mathrm{Y}] / a)$ to $\mathrm{e}^{r \mathrm{X}}$, and optimize over r, to conclude that:
i. For $0 \leq \epsilon \leq \ln 4, \operatorname{Pr}[\mathrm{X} \geq(1+\epsilon) \mathbb{E}[\mathrm{X}]] \leq \mathrm{e}^{-\epsilon^{2} \mathbb{E}[\mathrm{X}] / 4}$. ii. For $\epsilon \geq \ln 4, \operatorname{Pr}[\mathrm{X} \geq(1+\epsilon) \mathbb{E}[\mathrm{X}]] \leq 2^{-\epsilon \mathbb{E}[\mathrm{X}] / 2}$.
iii. For $0 \leq \epsilon \leq 1, \operatorname{Pr}[X \leq(1-\epsilon) \mathbb{E}[X]] \leq e^{-\epsilon^{2} \mathbb{E}[X] / 4}$.
iv. (Additive Chernoff Bound) For $\epsilon \geq 0, \operatorname{Pr}[|\mathrm{X}-\mathbb{E}[\mathrm{X}]| \geq \epsilon \cdot n] \leq 2 \mathrm{e}^{-\epsilon^{2} n / 4}$.
(d) Suppose now you have m independent identically random variables Y_{1}, \ldots, Y_{m} over $\{0,1\}$, where each for each $Y_{i}, \operatorname{Pr}\left[Y_{i}=1\right]=\frac{\lg m}{m}$. Define $\mathrm{Y}=\sum_{i} \mathrm{Y}_{i}$. Bound the tail probability $\operatorname{Pr}[\mathrm{Y} \geq 2 \mathbb{E}[\mathrm{Y}]]$, using both (i) and (iv) above, and compare these bounds.

Note: The above omits one range of parameters, where one can show that $\operatorname{Pr}[\mathrm{X} \geq(1+\epsilon) \mathbb{E}[\mathrm{X}]] \leq$ $\mathrm{e}^{-(1+\epsilon) \ln (1+\epsilon) \mathbb{E}[\mathrm{X}] / 4}$ if $\epsilon \geq 1$.
2. Balls and Bins. Kleinberg-Tardos Chapter 13, Problem \#13.
3. In lecture we saw the random contraction algorithm for computing a global min-cut for undirected (and unweighted) graphs. In particular, we saw that if C is a minimum cut then the probability one round of random contraction will output C is $\geq 1 /\binom{n}{2}$. This problem will explore the ability of the algorithm to output almost minimum cuts.
Let $k \geq 1$ be an integer, and suppose \hat{C} is a k-min-cut, in that \hat{C} has value $|\hat{C}| \leq k \min _{C}|C|$.
(a) Prove that after $n-2 k$ randomly contracted edges, the probability the cut \hat{C} has survived (that is, none of its edges have been contracted) is at least $\frac{1}{\binom{n}{2 k}}$.
(b) Suppose we modify the algorithm, so that after the first $n-2 k$ contractions, we output a random cut from the contracted graph. Prove that \hat{C} is output with probability $\geq \frac{1}{2^{2 k}\binom{n}{2 k}}$. Hint: what is an upper bound for the number of cuts in the contracted graph?
(c) Conclude that there are at most $O\left(n^{2 k}\right) k$-minimum cuts.

