
cs473 Algorithms

Problem Set #4

Prof. Michael A. Forbes Due: Fri., 2024-02-23 17:00

Submissions must obey the following guidelines when using reductions to solve problems, in
particular when using algorithms for computing maximum flows as a black-box.

• Construction: Submissions must completely describe the relevant capacitated graph by
describing the vertices, the edges (with direction), and capacities. The source s and sink t
must also be identified.

• Forward reduction: Submissions must describe an algorithm to, given the original input,
construct the above mentioned capacitated graph. This includes a correctness and complexity
analysis.

• Backwards reduction: Submissions must describe an algorithm to, given a maximum flow
in the constructed capacitated graph, efficiently solve the original problem. This includes a
correctness and complexity analysis. An argument for correctness will typically require two
directions. First, if the resulting maximum flow is large in value, then the produced solution
to the original problem is correct. Second, if the resulting maximum flow is small in value,
then the produced solution to the original problem is correct.

• Complexity: The overall complexity of the entire algorithm must be specified as a function of
the original input (not as a function of the constructed capacitated graph).

• Submissions should assume that maximum flows can be computed in O(nm) time on graphs
with n vertices and m edges, and in particular should not reproduce a maximum flow algorithm
unless required.

Analogous guidelines exist for reductions to other problems whose algorithms were presented
in lecture or auxiliary reading, such as shortest paths with negative edge lengths, or maximum
bipartite matching.

All problems are of equal value.

1. Decreasing the flow. Kleinberg-Tardos Chapter 7, Problem #12.

2. Disaster allocation. Kleinberg-Tardos Chapter 7, Problem #9.

3. Give an analysis (correctness and complexity) of the following algorithm for maximum flow,
expressing the runtime in terms of the number of vertices n, edges m, and sum of capacities
F =

∑
e ce.

rounding-FF(G = (V,E), (ce)e∈E):

if all capacities zero, return the zero flow

define capacities c′ by (c′)e = ⌊ce/2⌋, for e ∈ E.

recursively compute f =rounding-FF(G,c′)
fe ← 2 · fe for e ∈ E.

initialize the residual graph Gf

while exists s⇝ t path p in Gf

augment f ← f + p

update Gf ← Gf+p

return f

1


