cs473 Algorithms

Problem Set \#0

Prof. Michael A. Forbes
Due: Fri., 2022-01-26 17:00

Some reminders about logistics. See the course webpage for full details.

- Submission Policy: Submit psets via gradescope. Student psets must obey the following constraints:
- Each problem starts on its own page.
- The first page has the following metadata:
* author(s) of the problem set
- name(s)
- netid(s)
* pset number
* list of collaborators
- Collaboration Policy: For this problem set, each student must work independently and submit their own solutions. For the remaining problem sets, students are allowed to work in groups of up to three.
- Late Policy: Late psets are not accepted. Instead, several lowest-scoring pset problems will be dropped from a students score.

All problems are of equal value.

1. Solve the following recurrences, by giving an asymptotically tight bound of the form $\Theta(f(n))$ where $f(n)$ is a standard and well-known function. Assume as a base case that $T(n)=2$ for $n \leq 16$. No proofs are necessary.
(a) $T(n)=T(n / 2)+n^{3}$.
(b) $T(n)=4 T(n / 4)+n$.
(c) $T(n)=n^{2 / 3} T\left(n^{1 / 3}\right)+n$.
(d) $T(n)=3 T\left(n^{1 / 2}\right)+\log n$.
(e) $T(n)=2 T(n-5)+3$.
2. Paths with lengths a multiple of 6 . Erickson Chapter 5, Problem \#14 (http://jeffe.cs. illinois.edu/teaching/algorithms/book/05-graphs.pdf).
3. A class of m students will be taking an exam in a room. The room has n^{3} tables, one on each point in the grid $\{1, \ldots, n\} \times\left\{1, \ldots, n^{2}\right\}$. Each student sits at an independent and uniformly randomly chosen table. The instructor has set up a fan that blows in the x-direction toward infinity (along $(i, 1)$ to $\left(i, n^{2}\right)$ for any i) in order to enhance circulation.
(a) Compute the expected number of students who sit at a table that is also occupied by another student.
(b) A student is socially distanced (accounting for the fan) if they sit at a table (i,j), and no other student sits in any of the tables $\{(i, j),(i-1, j),(i-1, j+1),(i-1, j-1)\}$ (note that these 4 locations may not be locations of actual tables). Compute the expected number of socially distanced students.
(c) Suppose that out of the m students, k are ill. A non-ill student sitting at (i, j) is then exposed if, (a) an ill student also sits at (i,j), or (b) at least two ill students sit in the locations $\{(i-1, j),(i-1, j+1),(i-1, j-1)\}$. Compute the expected number of exposed students.
