1. You're organizing the First Annual UIUC Computer Science 72-Hour Dance Exchange, to be held all day Friday, Saturday, and Sunday. Several 30 -minute sets of music will be played during the event, and a large number of DJs have applied to perform. You need to hire DJs according to the following constraints.

- Exactly k sets of music must be played each day, and thus $3 k$ sets altogether.
- Each set must be played by a single DJ in a consistent music genre (ambient, bubblegum, dubstep, horrorcore, hyphy, trip-hop, Nitzhonot, Kwaito, J-pop, Nashville country, ...).
- Each genre must be played at most once per day.
- Each candidate DJ has given you a list of genres they are willing to play.
- Each DJ can play at most three sets during the entire event.

Suppose there are n candidate DJs and g different musical genres available. Describe and analyze an efficient algorithm that either assigns a DJ and a genre to each of the $3 k$ sets, or correctly reports that no such assignment is possible.
2. Suppose you are given an $n \times n$ checkerboard with some of the squares deleted. You have a large set of dominos, just the right size to cover two squares of the checkerboard. Describe and analyze an algorithm to determine whether one can tile the board with dominos-each domino must cover exactly two undeleted squares, and each undeleted square must be covered by exactly one domino.

Your input is a two-dimensional array Deleted $[1 . . n, 1 . . n]$ of bits, where Deleted $[i, j]=$ True if and only if the square in row i and column j has been deleted. Your output is a single bit; you do not have to compute the actual placement of dominos. For example, for the board shown above, your algorithm should return True.
3. Suppose we are given an array $A[1 . . m][1 . . n]$ of non-negative real numbers. We want to round A to an integer matrix, by replacing each entry x in A with either $\lfloor x\rfloor$ or $\lceil x\rceil$, without changing the sum of entries in any row or column of A. For example:

$$
\left[\begin{array}{lll}
1.2 & 3.4 & 2.4 \\
3.9 & 4.0 & 2.1 \\
7.9 & 1.6 & 0.5
\end{array}\right] \longmapsto\left[\begin{array}{lll}
1 & 4 & 2 \\
4 & 4 & 2 \\
8 & 1 & 1
\end{array}\right]
$$

Describe and analyze an efficient algorithm that either rounds A in this fashion, or reports correctly that no such rounding is possible.

CS 473 Fall 2013 - Homework 9 Problem 1

Name:		NetID:			
Name:			NetID:		
Name:			NetID:		
Section:	T4	T5	W2	W3	W5
None					

1. Describe and analyze an efficient algorithm that either assigns a DJ and a genre to each set, or correctly reports that no such assignment is possible.

CS 473 Fall 2013 - Homework 9 Problem 2

Name:			NetID:		
Name:			NetID:		
Name:			NetID:		
Section:	T4	T5	W2	W3	W5
None					

2. Describe and analyze an algorithm to determine whether one can tile a given board with dominos.

CS 473 Fall 2013 - Homework 8 Problem 3

Name:			NetID:		
Name:			NetID:		
Name:			NetID:		
Section:	T4	T5	W2	W3	W5

3. Describe and analyze an efficient algorithm that either rounds an $n \times n$ matrix, or reports correctly that no such rounding is possible.
