1. Suppose we are given a directed acyclic graph G with labeled vertices. Every path in G has a label, which is a string obtained by concatenating the labels of its vertices in order. Recall that a palindrome is a string that is equal to its reversal.

Describe and analyze an algorithm to find the length of the longest palindrome that is the label of a path in G. For example, given the graph below, your algorithm should return the integer 6, which is the length of the palindrome HANNAH.

2. Let G be a connected directed graph that contains both directions of every edge; that is, if $u \rightarrow v$ is an edge in G, its reversal $v \rightarrow u$ is also an edge in G. Consider the following non-standard traversal algorithm.

```
SpAGHETtITrAVERSAL(G):
    for all vertices v in G
            unmark v
    for all edges }u->v\mathrm{ in }
        color }u->v\mathrm{ white
    s}\leftarrow\mathrm{ any vertex in }
    Spaghetti(s)
```

SPAGHETTI (v) :	
mark v	</"visit v"〉>
if there is a white $\operatorname{arc} v \rightarrow w$ if w is unmarked color $w \rightarrow v$ green	
color $v \rightarrow w$ red Spaghetti (w)	$\langle\langle " t r a v e r s e v \rightarrow w "\rangle\rangle$
else if there is a green arc color $v \rightarrow w$ red Spaghetti (w)	<<"traverse $v \rightarrow w$ " $\rangle\rangle$
$\langle<\mathrm{else}$ every arc $v \rightarrow w$ is r	so halt ${ }^{\text {l }}$

We informally say that this algorithm "visits" vertex v every time it marks v, and it "traverses" edge $v \rightarrow w$ when it colors that edge red. Unlike our standard graph-traversal algorithms, Spaghetti may (in fact, will) mark/visit each vertex more than once.

The following series of exercises leads to a proof that Spaghetti traverses each directed edge of G exactly once. Most of the solutions are very short.
(a) Prove that no directed edge in G is traversed more than once.
(b) When the algorithm visits a vertex v for the k th time, exactly how many edges into v are red, and exactly how many edges out of v are red? [Hint: Consider the starting vertex s separately from the other vertices.]
(c) Prove each vertex v is visited at most $\operatorname{deg}(v)$ times, except the starting vertex s, which is visited at most $\operatorname{deg}(s)+1$ times. This claim immediately implies that SpaghettiTraversal(G) terminates.
(d) Prove that when SpaghettiTraversal(G) ends, the last visited vertex is the starting vertex s.
(e) For every vertex v that SpaghettiTraversal(G) visits, prove that all edges incident to v (either in or out) are red when SpaghettiTraversal (G) halts. [Hint: Consider the vertices in the order that they are marked for the first time, starting with s, and prove the claim by induction.]
(f) Prove that SpaghettiTraversal(G) visits every vertex of G.
(g) Finally, prove that SpaghettiTraversal (G) traverses every edge of G exactly once.

CS 473 Fall 2013 - Homework 7 Problem 1

Name:		NetID:			
Name:			NetID:		
Name:			NetID:		
Section:	T4	T5	W2	W3	W5
None					

1. Describe and analyze an algorithm to find, given a dag G with labeled vertices, the length of the longest palindrome that is the label of a path in G.

CS 473 Fall 2013 - Homework 7 Problem 2

Name:			NetID:		
Name:			NetID:		
Name:			NetID:		
Section:	T4	T5	W2	W3	W5
None					

2. Prove (in seven steps) that SpaghettiTraversal(G) traverses each edge in G exactly once.
