
CS 473 Homework 4 (due October 8, 2013) Fall 2013

1. A meldable priority queue stores a set of keys from some totally-ordered universe (such as the
integers) and supports the following operations:

• MAKEQUEUE: Return a new priority queue containing the empty set.

• FINDMIN(Q): Return the smallest element of Q (if any).

• DELETEMIN(Q): Remove the smallest element in Q (if any).

• INSERT(Q, x): Insert element x into Q, if it is not already there.

• DECREASEKEY(Q, x , y): Replace an element x ∈ Q with a smaller key y. (If y > x , the
operation fails.) The input is a pointer directly to the node in Q containing x .

• DELETE(Q, x): Delete the element x ∈ Q. The input is a pointer directly to the node in Q
containing x .

• MELD(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2; this
operation destroys Q1 and Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree — each
node stores a priority, which is smaller than the priorities of its children, along with pointers to
its parent and at most two children. MELD can be implemented using the following randomized
algorithm:

MELD(Q1,Q2):
if Q1 is empty return Q2
if Q2 is empty return Q1

if priority(Q1)> priority(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←MELD(left(Q1),Q2)

else
right(Q1)←MELD(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by the
operations listed above), the expected running time of MELD(Q1,Q2) is O(log n), where
n = |Q1|+ |Q2|. [Hint: How long is a random root-to-leaf path in an n-node binary tree if
each left/right choice is made uniformly and independently at random?]

(b) Show that each of the other meldable priority queue operations can be implemented with at
most one call to MELD and O(1) additional time. (This implies that every operation takes
O(log n) expected time.)

2. Recall that a priority search tree is a binary tree in which every node has both a search key and
a priority, arranged so that the tree is simultaneously a binary search tree for the keys and a
min-heap for the priorities. A treap is a priority search tree whose search keys are given by the
user and whose priorities are independent random numbers.

A heater is a priority search tree whose priorities are given by the user and whose search keys
are distributed uniformly and independently at random in the real interval [0,1]. Intuitively, a
heater is a sort of anti-treap.1

1There are those who think that life has nothing left to chance, a host of holy horrors to direct our aimless dance.

1

CS 473 Homework 4 (due October 8, 2013) Fall 2013

The following problems consider an n-node heater T . We identify nodes in T by their priority
rank; for example, “node 5” means the node in T with the 5th smallest priority. The min-heap
property implies that node 1 is the root of T . You may assume all search keys and priorities are
distinct. Finally, let i and j be arbitrary integers with 1≤ i < j ≤ n.

(a) Prove that if we permute the set {1,2, . . . , n} uniformly at random, integers i and j are
adjacent with probability 2/n.

(b) Prove that node i is an ancestor of node j with probability 2/(i+ 1). [Hint: Use part (a)!]

(c) What is the probability that node i is a descendant of node j? [Hint: Don’t use part (a)!]

(d) What is the exact expected depth of node j?
(e) Describe and analyze an algorithm to insert a new item into an n-node heater.

(f) Describe and analyze an algorithm to delete the smallest priority (the root) from an n-node
heater.

?3. Extra credit; due October 15. In the usual theoretical presentation of treaps, the priorities are
random real numbers chosen uniformly from the interval [0, 1]. In practice, however, computers
have access only to random bits. This problem asks you to analyze an implementation of treaps
that takes this limitation into account.

Suppose the priority of a node v is abstractly represented as an infinite sequence πv[1 ..∞] of
random bits, which is interpreted as the rational number

priority(v) =
∞
∑

i=1

πv[i] · 2−i .

However, only a finite number `v of these bits are actually known at any given time. When a
node v is first created, none of the priority bits are known: `v = 0. We generate (or “reveal”)
new random bits only when they are necessary to compare priorities. The following algorithm
compares the priorities of any two nodes in O(1) expected time:

LARGERPRIORITY(v, w):
for i← 1 to∞

if i > `v
`v ← i; πv[i]← RANDOMBIT

if i > `w
`w ← i; πw[i]← RANDOMBIT

if πv[i]> πw[i]
return v

else if πv[i]< πw[i]
return w

Suppose we insert n items one at a time into an initially empty treap. Let L =
∑

v `v denote
the total number of random bits generated by calls to LARGERPRIORITY during these insertions.

(a) Prove that E[L] = Θ(n).
(b) Prove that E[`v] = Θ(1) for any node v. [Hint: This is equivalent to part (a). Why?]

(c) Prove that E[`root] = Θ(log n). [Hint: Why doesn’t this contradict part (b)?]

2

CS 473 Fall 2013 — Homework 4 Problem 1

Name: NetID:
Name: NetID:
Name: NetID:
Section: T4 T5 W2 W3 W5 None

(a) Prove that for any heap-ordered binary trees Q1 and Q2, the expected running time of MELD(Q1,Q2)
is O(log n), where n= |Q1|+ |Q2|.

(b) Show that each of the other meldable priority queue operations can be implemented with at most
one call to MELD and O(1) additional time.

CS 473 Fall 2013 — Homework 4 Problem 2

Name: NetID:
Name: NetID:
Name: NetID:
Section: T4 T5 W2 W3 W5 None

(a) Prove that if we permute the set {1,2, . . . , n} uniformly at random, integers i and j are adjacent
with probability 2/n.

(b) Prove that in any heater, node i is an ancestor of node j with probability 2/(i+ 1).

(c) What is the probability that node i is a descendant of node j?

(d) What is the exact expected depth of node j?

(e) Describe and analyze an algorithm to insert a new item into a heater.

(f) Describe and analyze an algorithm to delete the smallest priority (the root) from a heater.

CS 473 Fall 2013 — Homework 4 Problem 3
Extra credit — due October 15

Name: NetID:
Name: NetID:
Name: NetID:
Section: T4 T5 W2 W3 W5 None

Suppose we insert n items one at a time into an initially empty treap. Let L =
∑

v `v denote the total
number of random bits generated by calls to LARGERPRIORITY during these insertions.

(a) Prove that E[L] = Θ(n).

(b) Prove that E[`v] = Θ(1) for any node v.

(c) Prove that E[`root] = Θ(log n).

