1. A longest common subsequence of a set of strings $\left\{A_{i}\right\}$ is a longest string that is a subsequence of A_{i} for each i. For example, alrit is a longest common subsequence of strings
algorithm and altruistic.
Given two strings $A[1 . . n]$ and $B[1 . . n]$, describe and analyze a fast dynamic programming algorithm that computes the length of a longest common subsequence of the two strings.
2. Describe and analyze a fast dynamic programming algorithm that computes the length of a longest common subsequence of three strings $A[1 . . n], B[1 . . n]$, and $C[1 . . n]$.
3. A lucky-10 number is a string $D[1 . . n]$ of digits from 1 to 9 (no zeros), such that the i-th digit and the last i-th digit sum up to 10 ; in another words, $D[i]+D[n-i+1]=10$ for all i. For example,

$$
3141592648159697 \text { and } 11599
$$

are both lucky-10 numbers. Given a string of digits D [1..n], describe and analyze a dynamic programming algorithm that computes the length of a longest lucky-10 subsequence of the string. [Hint: Try to use your solution to problem 1 directly.]
4. To think about later: Can you solve problem 1 in $O(n)$ space?

