
Algorithms Lecture 15: Scapegoat and Splay Trees [Fa’12]

Everything was balanced before the computers went off line. Try and adjust something, and
you unbalance something else. Try and adjust that, you unbalance two more and before you
know what’s happened, the ship is out of control.

— Blake, Blake’s 7, “Breakdown” (March 6, 1978)

A good scapegoat is nearly as welcome as a solution to the problem.

— Anonymous

Let’s play.

— El Mariachi [Antonio Banderas], Desperado (1992)

CAPTAIN: TAKE OFF EVERY ’ZIG’!!
CAPTAIN: YOU KNOW WHAT YOU DOING.
CAPTAIN: MOVE ’ZIG’.
CAPTAIN: FOR GREAT JUSTICE.

— Zero Wing (1992)

15 Scapegoat and Splay Trees

15.1 Definitions

I’ll assume that everyone is already familiar with the standard terminology for binary search trees—node,
search key, edge, root, internal node, leaf, right child, left child, parent, descendant, sibling, ancestor,
subtree, preorder, postorder, inorder, etc.—as well as the standard algorithms for searching for a node,
inserting a node, or deleting a node. Otherwise, consult your favorite data structures textbook.

For this lecture, we will consider only full binary trees—where every internal node has exactly two
children—where only the internal nodes actually store search keys. In practice, we can represent the
leaves with null pointers.

Recall that the depth of a node is its distance from the root, and its height is the distance to the
farthest leaf in its subtree. The height (or depth) of the tree is just the height of the root. The size of a
node is the number of nodes in its subtree. The size n of the whole tree is just the total number of nodes.

A tree with height h has at most 2h leaves, so the minimum height of an n-leaf binary tree is dlg ne.
In the worst case, the time required for a search, insertion, or deletion to the height of the tree, so in
general we would like keep the height as close to lg n as possible. The best we can possibly do is to
have a perfectly balanced tree, in which each subtree has as close to half the leaves as possible, and both
subtrees are perfectly balanced. The height of a perfectly balanced tree is dlg ne, so the worst-case search
time is O(log n). However, even if we started with a perfectly balanced tree, a malicious sequence of
insertions and/or deletions could make the tree arbitrarily unbalanced, driving the search time up to
Θ(n).

To avoid this problem, we need to periodically modify the tree to maintain ‘balance’. There are
several methods for doing this, and depending on the method we use, the search tree is given a different
name. Examples include AVL trees, red-black trees, height-balanced trees, weight-balanced trees,
bounded-balance trees, path-balanced trees, B-trees, treaps, randomized binary search trees, skip lists,1

and jumplists. Some of these trees support searches, insertions, and deletions, in O(log n) worst-case
time, others in O(log n) amortized time, still others in O(log n) expected time.

In this lecture, I’ll discuss two binary search tree data structures with good amortized performance.
The first is the scapegoat tree, discovered by Arne Andersson* in 1989 [1, 2] and independently2 by Igal

1Yeah, yeah. Skip lists aren’t really binary search trees. Whatever you say, Mr. Picky.
2The claim of independence is Andersson’s [2]. The two papers actually describe very slightly different rebalancing

algorithms. The algorithm I’m using here is closer to Andersson’s, but my analysis is closer to Galperin and Rivest’s.

c© Copyright 2012 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.
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Galperin* and Ron Rivest in 1993 [10]. The second is the splay tree, discovered by Danny Sleator and
Bob Tarjan in 1981 [16, 14].

15.2 Lazy Deletions: Global Rebuilding

First let’s consider the simple case where we start with a perfectly-balanced tree, and we only want to
perform searches and deletions. To get good search and delete times, we will use a technique called
global rebuilding. When we get a delete request, we locate and mark the node to be deleted, but we don’t
actually delete it. This requires a simple modification to our search algorithm—we still use marked nodes
to guide searches, but if we search for a marked node, the search routine says it isn’t there. This keeps
the tree more or less balanced, but now the search time is no longer a function of the amount of data
currently stored in the tree. To remedy this, we also keep track of how many nodes have been marked,
and then apply the following rule:

Global Rebuilding Rule. As soon as half the nodes in the tree have been marked, rebuild a
new perfectly balanced tree containing only the unmarked nodes.3

With this rule in place, a search takes O(log n) time in the worst case, where n is the number of
unmarked nodes. Specifically, since the tree has at most n marked nodes, or 2n nodes altogether, we
need to examine at most lg n+ 1 keys. There are several methods for rebuilding the tree in O(n) time,
where n is the size of the new tree. (Homework!) So a single deletion can cost Θ(n) time in the worst
case, but only if we have to rebuild; most deletions take only O(log n) time.

We spend O(n) time rebuilding, but only after Ω(n) deletions, so the amortized cost of rebuilding the
tree is O(1) per deletion. (Here I’m using a simple version of the ‘taxation method’. For each deletion,
we charge a $1 tax; after n deletions, we’ve collected $n, which is just enough to pay for rebalancing the
tree containing the remaining n nodes.) Since we also have to find and mark the node being ‘deleted’,
the total amortized time for a deletion is O(logn).

15.3 Insertions: Partial Rebuilding

Now suppose we only want to support searches and insertions. We can’t ‘not really insert’ new nodes
into the tree, since that would make them unavailable to the search algorithm.4 So instead, we’ll use
another method called partial rebuilding. We will insert new nodes normally, but whenever a subtree
becomes unbalanced enough, we rebuild it. The definition of ‘unbalanced enough’ depends on an
arbitrary constant α > 1.

Each node v will now also store height(v) and size(v). We now modify our insertion algorithm with
the following rule:

Partial Rebuilding Rule. After we insert a node, walk back up the tree updating the heights
and sizes of the nodes on the search path. If we encounter a node v where height(v) >
α · lg(size(v)), rebuild its subtree into a perfectly balanced tree (in O(size(v)) time).

If we always follow this rule, then after an insertion, the height of the tree is at most α · lg n. Thus,
since α is a constant, the worst-case search time is O(log n). In the worst case, insertions require Θ(n)
time—we might have to rebuild the entire tree. However, the amortized time for each insertion is again
only O(log n). Not surprisingly, the proof is a little bit more complicated than for deletions.

3Alternately: When the number of unmarked nodes is one less than an exact power of two, rebuild the tree. This rule
ensures that the tree is always exactly balanced.

4Well, we could use the Bentley-Saxe* logarithmic method [3], but that would raise the query time to O(log2 n).
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Define the imbalance I(v) of a node v to be one less than the absolute difference between the sizes
of its two subtrees, or zero, whichever is larger:

I(v) :=max
¦

0, |size(left(v))− size(right(v))| − 1
©

A simple induction proof implies that I(v) = 0 for every node v in a perfectly balanced tree. So
immediately after we rebuild the subtree of v, we have I(v) = 0. On the other hand, each insertion into
the subtree of v increments either size(left(v)) or size(right(v)), so I(v) changes by at most 1.

The whole analysis boils down to the following lemma.

Lemma 1. Just before we rebuild v’s subtree, I(v) = Ω(size(v)).

Before we prove this, let’s first look at what it implies. If I(v) = Ω(size(v)), then Ω(size(v)) keys
have been inserted in the v’s subtree since the last time it was rebuilt from scratch. On the other hand,
rebuilding the subtree requires O(size(v)) time. Thus, if we amortize the rebuilding cost across all the
insertions since the last rebuilding, v is charged constant time for each insertion into its subtree. Since
each new key is inserted into at most α · lg n = O(log n) subtrees, the total amortized cost of an insertion
is O(logn).

Proof: Since we’re about to rebuild the subtree at v, we must have height(v)> α · lg size(v). Without
loss of generality, suppose that the node we just inserted went into v’s left subtree. Either we just rebuilt
this subtree or we didn’t have to, so we also have height(left(v))≤ α · lg size(left(v)). Combining these
two inequalities with the recursive definition of height, we get

α · lg size(v) < height(v) ≤ height(left(v)) + 1 ≤ α · lg size(left(v)) + 1.

After some algebra, this simplifies to size(left(v)) > size(v)/21/α. Combining this with the identity
size(v) = size(left(v)) + size(right(v)) + 1 and doing some more algebra gives us the inequality

size(right(v))<
�

1− 1/21/α�size(v)− 1.

Finally, we combine these two inequalities using the recursive definition of imbalance.

I(v) ≥ size(left(v))− size(right(v))− 1 >
�

2/21/α− 1
�

size(v)

Since α is a constant bigger than 1, the factor in parentheses is a positive constant. �

15.4 Scapegoat Trees

Finally, to handle both insertions and deletions efficiently, scapegoat trees use both of the previous
techniques. We use partial rebuilding to re-balance the tree after insertions, and global rebuilding to
re-balance the tree after deletions. Each search takes O(log n) time in the worst case, and the amortized
time for any insertion or deletion is also O(log n). There are a few small technical details left (which I
won’t describe), but no new ideas are required.

Once we’ve done the analysis, we can actually simplify the data structure. It’s not hard to prove that
at most one subtree (the scapegoat) is rebuilt during any insertion. Less obviously, we can even get the
same amortized time bounds (except for a small constant factor) if we only maintain the three integers
in addition to the actual tree: the size of the entire tree, the height of the entire tree, and the number
of marked nodes. Whenever an insertion causes the tree to become unbalanced, we can compute the
sizes of all the subtrees on the search path, starting at the new leaf and stopping at the scapegoat, in
time proportional to the size of the scapegoat subtree. Since we need that much time to re-balance the
scapegoat subtree, this computation increases the running time by only a small constant factor! Thus,
unlike almost every other kind of balanced trees, scapegoat trees require only O(1) extra space.
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15.5 Rotations, Double Rotations, and Splaying

Another method for maintaining balance in binary search trees is by adjusting the shape of the tree
locally, using an operation called a rotation. A rotation at a node x decreases its depth by one and
increases its parent’s depth by one. Rotations can be performed in constant time, since they only involve
simple pointer manipulation.

left

right
x

yx

y

Figure 1. A right rotation at x and a left rotation at y are inverses.

For technical reasons, we will need to use rotations two at a time. There are two types of double
rotations, which might be called zig-zag and roller-coaster. A zig-zag at x consists of two rotations at x ,
in opposite directions. A roller-coaster at a node x consists of a rotation at x ’s parent followed by a
rotation at x , both in the same direction. Each double rotation decreases the depth of x by two, leaves
the depth of its parent unchanged, and increases the depth of its grandparent by either one or two,
depending on the type of double rotation. Either type of double rotation can be performed in constant
time.

zw

x

x

z

w x

w

z

Figure 2. A zig-zag at x . The symmetric case is not shown.
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Figure 3. A right roller-coaster at x and a left roller-coaster at z.

Finally, a splay operation moves an arbitrary node in the tree up to the root through a series of double
rotations, possibly with one single rotation at the end. Splaying a node v requires time proportional to
depth(v). (Obviously, this means the depth before splaying, since after splaying v is the root and thus has
depth zero!)

15.6 Splay Trees

A splay tree is a binary search tree that is kept more or less balanced by splaying. Intuitively, after we
access any node, we move it to the root with a splay operation. In more detail:

• Search: Find the node containing the key using the usual algorithm, or its predecessor or successor
if the key is not present. Splay whichever node was found.

4



Algorithms Lecture 15: Scapegoat and Splay Trees [Fa’12]

a

b

c

d

f

e

g

h

i

j

k

l

m

n

x

g

a

b

c

d

f

e

k

l

m

n

x

j

h

i

a

b

c

d

m

nx

k

l

f

e

g

j

h

i

a

b

c

d m

n

x

k

l

f

e

g

j

h

i

k

l

a

b m

n

x

c f

e

g

j

h

i

d

Figure 4. Splaying a node. Irrelevant subtrees are omitted for clarity.

• Insert: Insert a new node using the usual algorithm, then splay that node.

• Delete: Find the node x to be deleted, splay it, and then delete it. This splits the tree into two
subtrees, one with keys less than x , the other with keys bigger than x . Find the node w in the left
subtree with the largest key (the inorder predecessor of x in the original tree), splay it, and finally
join it to the right subtree.

x

x

w

w
w

Figure 5. Deleting a node in a splay tree.

Each search, insertion, or deletion consists of a constant number of operations of the form walk down
to a node, and then splay it up to the root. Since the walk down is clearly cheaper than the splay up, all
we need to get good amortized bounds for splay trees is to derive good amortized bounds for a single
splay.

Believe it or not, the easiest way to do this uses the potential method. We define the rank of a node v
to be blg size(v)c, and the potential of a splay tree to be the sum of the ranks of its nodes:

Φ :=
∑

v

rank(v) =
∑

v

�

lg size(v)
�

It’s not hard to observe that a perfectly balanced binary tree has potential Θ(n), and a linear chain of
nodes (a perfectly unbalanced tree) has potential Θ(n log n).

The amortized analysis of splay trees boils down to the following lemma. Here, rank(v) denotes the
rank of v before a (single or double) rotation, and rank′(v) denotes its rank afterwards. Recall that the
amortized cost is defined to be the number of rotations plus the drop in potential.

The Access Lemma. The amortized cost of a single rotation at any node v is at most 1+ 3 rank′(v)−
3 rank(v), and the amortized cost of a double rotation at any node v is at most 3 rank′(v)− 3 rank(v).

Proving this lemma is a straightforward but tedious case analysis of the different types of rotations.
For the sake of completeness, I’ll give a proof (of a generalized version) in the next section.
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By adding up the amortized costs of all the rotations, we find that the total amortized cost of splaying
a node v is at most 1+ 3 rank′(v)− 3 rank(v), where rank′(v) is the rank of v after the entire splay.
(The intermediate ranks cancel out in a nice telescoping sum.) But after the splay, v is the root! Thus,
rank′(v) = blg nc, which implies that the amortized cost of a splay is at most 3 lg n− 1= O(log n).

We conclude that every insertion, deletion, or search in a splay tree takes O(log n) amortized time.

15.7 Other Optimality Properties?

In fact, splay trees are optimal in several other senses. Some of these optimality properties follow easily
from the following generalization of the Access Lemma.

Let’s arbitrarily assign each node v a non-negative real weight w(v). These weights are not actually
stored in the splay tree, nor do they affect the splay algorithm in any way; they are only used to help with
the analysis. We then redefine the size s(v) of a node v to be the sum of the weights of the descendants
of v, including v itself:

s(v) := w(v) + s(right(v)) + s(left(v)).

If w(v) = 1 for every node v, then the size of a node is just the number of nodes in its subtree, as in the
previous section. As before, we define the rank of any node v to be r(v) = lg s(v), and the potential of a
splay tree to be the sum of the ranks of all its nodes:

Φ =
∑

v
r(v) =

∑

v
lg s(v)

In the following lemma, r(v) denotes the rank of v before a (single or double) rotation, and r ′(v)
denotes its rank afterwards.

The Generalized Access Lemma. For any assignment of non-negative weights to the nodes, the amor-
tized cost of a single rotation at any node x is at most 1+ 3r ′(x)− 3r(x), and the amortized cost of a
double rotation at any node v is at most 3r ′(x)− 3r(x).

Proof: First consider a single rotation, as shown in Figure 1.

1+Φ′−Φ = 1+ r ′(x) + r ′(y)− r(x)− r(y) [only x and y change rank]

≤ 1+ r ′(x)− r(x) [r ′(y)≤ r(y)]

≤ 1+ 3r ′(x)− 3r(x) [r ′(x)≥ r(x)]

Now consider a zig-zag, as shown in Figure 2. Only w, x , and z change rank.

2+Φ′−Φ
= 2+ r ′(w) + r ′(x) + r ′(z)− r(w)− r(x)− r(z) [only w, x , z change rank]

≤ 2+ r ′(w) + r ′(x) + r ′(z)− 2r(x) [r(x)≤ r(w) and r ′(x) = r(z)]

= 2+ (r ′(w)− r ′(x)) + (r ′(z)− r ′(x)) + 2(r ′(x)− r(x))

= 2+ lg
s′(w)
s′(x)

+ lg
s′(z)
s′(x)

+ 2(r ′(x)− r(x))

≤ 2+ 2 lg
s′(x)/2
s′(x)

+ 2(r ′(x)− r(x)) [s′(w) + s′(z)≤ s′(x), lg is concave]

= 2(r ′(x)− r(x))

≤ 3(r ′(x)− r(x)) [r ′(x)≥ r(x)]

6
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Finally, consider a roller-coaster, as shown in Figure 3. Only x , y , and z change rank.

2+Φ′−Φ
= 2+ r ′(x) + r ′(y) + r ′(z)− r(x)− r(y)− r(z) [only x , y, z change rank]

≤ 2+ r ′(x) + r ′(z)− 2r(x) [r ′(y)≤ r(z) and r(x)≥ r(y)]

= 2+ (r(x)− r ′(x)) + (r ′(z)− r ′(x)) + 3(r ′(x)− r(x))

= 2+ lg
s(x)
s′(x)

+ lg
s′(z)
s′(x)

+ 3(r ′(x)− r(x))

≤ 2+ 2 lg
s′(x)/2
s′(x)

+ 3(r ′(x)− r(x)) [s(x) + s′(z)≤ s′(x), lg is concave]

= 3(r ′(x)− r(x))

This completes the proof. 5 �

Observe that this argument works for arbitrary non-negative vertex weights. By adding up the
amortized costs of all the rotations, we find that the total amortized cost of splaying a node x is at most
1+ 3r(root)− 3r(x). (The intermediate ranks cancel out in a nice telescoping sum.)

This analysis has several immediate corollaries. The first corollary is that the amortized search time
in a splay tree is within a constant factor of the search time in the best possible static binary search tree.
Thus, if some nodes are accessed more often than others, the standard splay algorithm automatically
keeps those more frequent nodes closer to the root, at least most of the time.

Static Optimality Theorem. Suppose each node x is accessed at least t(x) times, and let T =
∑

x t(x).
The amortized cost of accessing x is O(log T − log t(x)).

Proof: Set w(x) = t(x) for each node x . �

For any nodes x and z, let dist(x , z) denote the rank distance between x and y , that is, the number
of nodes y such that key(x)≤ key(y)≤ key(z) or key(x)≥ key(y)≥ key(z). In particular, dist(x , x) = 1
for all x .

Static Finger Theorem. For any fixed node f (‘the finger’), the amortized cost of accessing x is
O(lg dist( f , x)).

Proof: Set w(x) = 1/dist(x , f )2 for each node x . Then s(root) ≤
∑∞

i=1 2/i2 = π2/3 = O(1), and
r(x)≥ lg w(x) =−2 lgdist( f , x). �

Here are a few more interesting properties of splay trees, which I’ll state without proof.6 The proofs
of these properties (especially the dynamic finger theorem) are considerably more complicated than the
amortized analysis presented above.

Working Set Theorem [14]. The amortized cost of accessing node x is O(log D), where D is the
number of distinct items accessed since the last time x was accessed. (For the first access to x , we set
D = n.)

5This proof is essentially taken verbatim from the original Sleator and Tarjan paper. Another proof technique, which may be
more accessible, involves maintaining blg s(v)c tokens on each node v and arguing about the changes in token distribution
caused by each single or double rotation. But I haven’t yet internalized this approach enough to include it here.

6This list and the following section are taken almost directly from Erik Demaine’s lecture notes [5].
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Scanning Theorem [17]. Splaying all nodes in a splay tree in order, starting from any initial tree,
requires O(n) total rotations.

Dynamic Finger Theorem [7, 6]. Immediately after accessing node y , the amortized cost of accessing
node x is O(lg dist(x , y)).

15.8 Splay Tree Conjectures?

Splay trees are conjectured to have many interesting properties in addition to the optimality properties
that have been proved; I’ll describe just a few of the more important ones.

The Deque Conjecture [17] considers the cost of dynamically maintaining two fingers l and r, starting
on the left and right ends of the tree. Suppose at each step, we can move one of these two fingers either
one step left or one step right; in other words, we are using the splay tree as a doubly-ended queue.
Sundar* proved that the total cost of m deque operations on an n-node splay tree is O((m+ n)α(m+ n))
[15]. More recently, Pettie later improved this bound to O(mα∗(n)) [13]. The Deque Conjecture states
that the total cost is actually O(m+ n).

The Traversal Conjecture [14] states that accessing the nodes in a splay tree, in the order specified by
a preorder traversal of any other binary tree with the same keys, takes O(n) time. This is generalization
of the Scanning Theorem.

The Unified Conjecture [12] states that the time to access node x is O(lgminy(D(y) + d(x , y))),
where D(y) is the number of distinct nodes accessed since the last time y was accessed. This would
immediately imply both the Dynamic Finger Theorem, which is about spatial locality, and the Working
Set Theorem, which is about temporal locality. Two other structures are known that satisfy the unified
bound [4, 12].

Finally, the most important conjecture about splay trees, and one of the most important open
problems about data structures, is that they are dynamically optimal [14]. Specifically, the cost of any
sequence of accesses to a splay tree is conjectured to be at most a constant factor more than the cost of
the best possible dynamic binary search tree that knows the entire access sequence in advance. To make
the rules concrete, we consider binary search trees that can undergo arbitrary rotations after a search;
the cost of a search is the number of key comparisons plus the number of rotations. We do not require
that the rotations be on or even near the search path. This is an extremely strong conjecture!

No dynamically optimal binary search tree is known, even in the offline setting. However, three very
similar O(log log n)-competitive binary search trees have been discovered in the last few years: Tango
trees [8], multisplay trees [18], and chain-splay trees [11]. A recently-published geometric formulation
of dynamic binary search trees [9] also offers significant hope for future progress.
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Exercises

1. (a) An n-node binary tree is perfectly balanced if either n ≤ 1, or its two subtrees are perfectly
balanced binary trees, each with at most bn/2c nodes. Prove that I(v) = 0 for every node v
of any perfectly balanced tree.

(b) Prove that at most one subtree is rebalanced during a scapegoat tree insertion.

2. In a dirty binary search tree, each node is labeled either clean or dirty. The lazy deletion scheme
used for scapegoat trees requires us to purge the search tree, keeping all the clean nodes and
deleting all the dirty nodes, as soon as half the nodes become dirty. In addition, the purged tree
should be perfectly balanced.

(a) Describe and analyze an algorithm to purge an arbitrary n-node dirty binary search tree in
O(n) time. (Such an algorithm is necessary for scapegoat trees to achieve O(log n) amortized
insertion cost.)

?(b) Modify your algorithm so that is uses only O(log n) space, in addition to the tree itself. Don’t
forget to include the recursion stack in your space bound.

Æ(c) Modify your algorithm so that is uses only O(1) additional space. In particular, your algorithm
cannot call itself recursively at all.

3. Consider the following simpler alternative to splaying:

MOVETOROOT(v):
while parent(v) 6= NULL

rotate at v

9
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Prove that the amortized cost of MOVETOROOT in an n-node binary tree can be Ω(n). That is, prove
that for any integer k, there is a sequence of k MOVETOROOT operations that require Ω(kn) time to
execute.

4. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane that
have at least one point in P both above and to the right.

A set of points in the plane and its staircase (shaded).

(a) Describe an algorithm to compute the staircase of a set of n points in O(n log n) time.

(b) Describe and analyze a data structure that stores the staircase of a set of points, and an
algorithm ABOVE?(x , y) that returns TRUE if the point (x , y) is above the staircase, or FALSE

otherwise. Your data structure should use O(n) space, and your ABOVE? algorithm should
run in O(log n) time.

TRUE

FALSE

Two staircase queries.

(c) Describe and analyze a data structure that maintains a staircase as new points are inserted.
Specifically, your data structure should support a function INSERT(x , y) that adds the point
(x , y) to the underlying point set and returns TRUE or FALSE to indicate whether the staircase
of the set has changed. Your data structure should use O(n) space, and your INSERT algorithm
should run in O(log n) amortized time.

TRUE!

FALSE!

Two staircase insertions.

5. Suppose we want to maintain a dynamic set of values, subject to the following operations:

• INSERT(x): Add x to the set (if it isn’t already there).

• PRINT&DELETEBETWEEN(a, b): Print every element x in the range a ≤ x ≤ b, in increasing
order, and delete those elements from the set.

10
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For example, if the current set is {1, 5,3, 4,8}, then

• PRINT&DELETEBETWEEN(4, 6) prints the numbers 4 and 5 and changes the set to {1,3, 8};
• PRINT&DELETEBETWEEN(6, 7) prints nothing and does not change the set;

• PRINT&DELETEBETWEEN(0, 10) prints the sequence 1, 3,4,5, 8 and deletes everything.

(a) Suppose we store the set in our favorite balanced binary search tree, using the standard
INSERT algorithm and the following algorithm for PRINT&DELETEBETWEEN:

PRINT&DELETEBETWEEN(a, b):
x ← SUCCESSOR(a)
while x ≤ b

print x
DELETE(x)
x ← SUCCESSOR(a)

Here, SUCCESSOR(a) returns the smallest element greater than or equal to a (or∞ if there is
no such element), and DELETE is the standard deletion algorithm. Prove that the amortized
time for INSERT and PRINT&DELETEBETWEEN is O(log N), where N is the maximum number of
items that are ever stored in the tree.

(b) Describe and analyze INSERT and PRINT&DELETEBETWEEN algorithms that run in O(log n)
amortized time, where n is the current number of elements in the set.

(c) What is the running time of your INSERT algorithm in the worst case?

(d) What is the running time of your PRINT&DELETEBETWEEN algorithm in the worst case?

6. Say that a binary search tree is augmented if every node v also stores size(v), the number of nodes
in the subtree rooted at v.

(a) Show that a rotation in an augmented binary tree can be performed in constant time.

(b) Describe an algorithm SCAPEGOATSELECT(k) that selects the kth smallest item in an augmented
scapegoat tree in O(log n) worst-case time. (The scapegoat trees presented in these notes are
already augmented.)

(c) Describe an algorithm SPLAYSELECT(k) that selects the kth smallest item in an augmented
splay tree in O(log n) amortized time.

(d) Describe an algorithm TREAPSELECT(k) that selects the kth smallest item in an augmented
treap in O(log n) expected time.

7. Many applications of binary search trees attach a secondary data structure to each node in the tree,
to allow for more complicated searches. Let T be an arbitrary binary tree. The secondary data
structure at any node v stores exactly the same set of items as the subtree of T rooted at v. This
secondary structure has size O(size(v)) and can be built in O(size(v)) time, where size(v) denotes
the number of descendants of v.

The primary and secondary data structures are typically defined by different attributes of the
data being stored. For example, to store a set of points in the plane, we could define the primary
tree T in terms of the x-coordinates of the points, and define the secondary data structures in
terms of their y-coordinate.

11
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Maintaining these secondary structures complicates algorithms for keeping the top-level search
tree balanced. Specifically, performing a rotation at any node v in the primary tree now requires
O(size(v)) time, because we have to rebuild one of the secondary structures (at the new child
of v). When we insert a new item into T , we must also insert into one or more secondary data
structures.

(a) Overall, how much space does this data structure use in the worst case?

(b) How much space does this structure use if the primary search tree is perfectly balanced?

(c) Suppose the primary tree is a splay tree. Prove that the amortized cost of a splay (and
therefore of a search, insertion, or deletion) is Ω(n). [Hint: This is easy!]

(d) Now suppose the primary tree T is a scapegoat tree. How long does it take to rebuild the
subtree of T rooted at some node v, as a function of size(v)?

(e) Suppose the primary tree and all secondary trees are scapegoat trees. What is the amortized
cost of a single insertion?

?(f) Finally, suppose the primary tree and every secondary tree is a treap. What is the worst-case
expected time for a single insertion?

8. Suppose we want to maintain a collection of strings (sequences of characters) under the following
operations:

• NEWSTRING(a) creates a new string of length 1 containing only the character a and returns a
pointer to that string.

• CONCAT(S, T ) removes the strings S and T (given by pointers) from the data structure, adds
the concatenated string ST to the data structure, and returns a pointer to the new string.

• SPLIT(S, k) removes the strings S (given by a pointer) from the data structure, adds the first
k characters of S and the rest of S as two new strings in the data structure, and returns
pointers to the two new strings.

• REVERSE(S) removes the string S (given by a pointer) from the data structure, adds the
reversal of S to the data structure, and returns a pointer to the new string.

• LOOKUP(S, k) returns the kth character in string S (given by a pointer), or NULL if the length
of the S is less than k.

Describe and analyze a simple data structure that supports NEWSTRING and REVERSE in O(1)
worst-case time, supports every other operation in O(log n) time (either worst-case, expected, or
amortized), and uses O(n) space, where n is the sum of the current string lengths. [Hint: Why is
this problem here?]

9. After the Great Academic Meltdown of 2020, you get a job as a cook’s assistant at Jumpin’ Jack’s
Flapjack Stack Shack, which sells arbitrarily-large stacks of pancakes for just four bits (50 cents)
each. Jumpin’ Jack insists that any stack of pancakes given to one of his customers must be sorted,
with smaller pancakes on top of larger pancakes. Also, whenever a pancake goes to a customer, at
least the top side must not be burned.

The cook provides you with a unsorted stack of n perfectly round pancakes, of n different sizes,
possibly burned on one or both sides. Your task is to throw out the pancakes that are burned on
both sides (and only those) and sort the remaining pancakes so that their burned sides (if any)
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face down. Your only tool is a spatula. You can insert the spatula under any pancake and then
either flip or discard the stack of pancakes above the spatula.

Flipping the top four pancakes. Again.

More concretely, we can represent a stack of pancakes by a sequence of distinct integers
between 1 and n, representing the sizes of the pancakes, with each number marked to indicate
the burned side(s) of the corresponding pancake. For example, 1 432 represents a stack of four
pancakes: a one-inch pancake burned on the bottom; a four-inch pancake burned on the top;
an unburned three-inch pancake, and a two-inch pancake burned on both sides. We store this
sequence in a data structure that supports the following operations:

• POSITION(x): Return the position of integer x in the current sequence, or 0 if x is not in the
sequence.

• VALUE(k): Return the kth integer in the current sequence, or 0 if the sequence has no kth
element. VALUE is essentially the inverse of POSITION.

• TOPBURNED(k): Return TRUE if and only if the top side of the kth pancake in the current
sequence is burned.

• FLIP(k): Reverse the order and the burn marks of the first k elements of the sequence.

• DISCARD(k): Discard the first k elements of the sequence.

(a) Describe an algorithm to filter and sort any stack of n burned pancakes using O(n) of the
operations listed above. Try to make the big-Oh constant small.

1 43 2
FLIP(4) // 2 3 4 1

DISCARD(1) // 34 1
FLIP(2) // 43 1

FLIP(3) // 1 3 4

(b) Describe a data structure that supports each of the operations listed above in O(log n)
amortized time. Together with part (a), such a data structure gives us an algorithm to filter
and sort any stack of n burned pancakes in O(n log n) time.

10. Let X = 〈x1, x2, . . . , xm〉 be a sequence of m integers, each from the set {1,2, . . . , n}. We can
visualize this sequence as a set of integer points in the plane, by interpreting each element x i as
the point (x i , i). The resulting point set, which we can also call X , has exactly one point on each
row of the n×m integer grid.

(a) Let Y be an arbitrary set of integer points in the plane. Two points (x1, y1) and (x2, y2)
in Y are isolated if (1) x1 6= x2 and y1 6= y2, and (2) there is no other point (x , y) ∈ Y with
x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. If the set Y contains no isolated pairs of points, we call Y a
commune.7

7Demaine et al. [9] refer to communes as arborally satisfied sets.
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Let X be an arbitrary set of points on the n× n integer grid with exactly one point per
row. Show that there is a commune Y that contains X and consists of O(n log n) points.

(b) Consider the following model of self-adjusting binary search trees. We interpret X as a
sequence of accesses in a binary search tree. Let T0 denote the initial tree. In the ith round,
we traverse the path from the root to node x i , and then arbitrarily reconfigure some subtree Si
of the current search tree Ti−1 to obtain the next search tree Ti . The only restriction is that
the subtree Si must contain both x i and the root of Ti−1. (For example, in a splay tree, Si is
the search path to x i .) The cost of the ith access is the number of nodes in the subtree Si .

Prove that the minimum cost of executing an access sequence X in this model is at least
the size of the smallest commune containing the corresponding point set X . [Hint: Lowest
common ancestor.]

?(c) Suppose X is a random permutation of the integers 1,2, . . . , n. Use the lower bound in
part (b) to prove that the expected minimum cost of executing X is Ω(n log n).

Æ(d) Describe a polynomial-time algorithm to compute (or even approximate up to constant
factors) the smallest commune containing a given set X of integer points, with at most one
point per row. Alternately, prove that the problem is NP-hard.

c© Copyright 2012 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.
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