
Algorithms Lecture 3: Backtracking [Fa’10]

’Tis a lesson you should heed,
Try, try again;

If at first you don’t succeed,
Try, try again;

Then your courage should appear,
For, if you will persevere,
You will conquer, never fear;

Try, try again.

— Thomas H. Palmer, The Teacher’s Manual: Being an Exposition
of an Efficient and Economical System of Education

Suited to the Wants of a Free People (1840)

When you come to a fork in the road, take it.

— Yogi Berra

3 Backtracking

In this lecture, I want to describe another recursive algorithm strategy called backtracking. A back-
tracking algorithm tries to build a solution to a computational problem incrementally. Whenever the
algorithm needs to decide between multiple alternatives to the next component of the solution, it simply
tries all possible options recursively.

3.1 n Queens

The prototypical backtracking problem is the classical n Queens Problem, first proposed by German
chess enthusiast Max Bezzel in 1848 for the standard 8× 8 board, and both solved and generalized to
larger boards by Franz Nauck in 1850. The problem is to place n queens on an n× n chessboard, so that
no two queens can attack each other. For readers not familiar with the rules of chess, this means that no
two queens are in the same row, column, or diagonal.

Obviously, in any solution to the n-Queens problem, there is exactly one queen in each row. So we
will represent our possible solutions using an array Q[1 .. n], where Q[i] indicates which square in row i
contains a queen, or 0 if no queen has yet been placed in row i. To find a solution, we put queens on the
board row by row, starting at the top. A partial solution is an array Q[1 .. n] whose first r − 1 entries are
positive and whose last n− r + 1 entries are all zeros, for some integer r.

The following recursive algorithm recursively enumerates all complete n-queens solutions that are
consistent with a given partial solution. The input parameter r is the first empty row. Thus, to compute
all n-queens solutions with no restrictions, we would call RECURSIVENQUEENS(Q[1 .. n], 1).

RECURSIVENQUEENS(Q[1 .. n], r):
if r = n+ 1

print Q
else

for j← 1 to n
legal← TRUE

for i← 1 to r − 1
if (Q[i] = j) or (Q[i] = j+ r − i) or (Q[i] = j− r + i)

legal← FALSE

if legal
Q[r]← j
RECURSIVENQUEENS(Q[1 .. n], r + 1)
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One solution to the 8 queens problem, represented by the array [4,7,3,8,2,5,1,6]

Like most recursive algorithms, the execution of a backtracking algorithm can be illustrated using a
recursion tree. The root of the recursion tree corresponds to the original invocation of the algorithm;
edges in the tree correspond to recursive calls. A path from the root down to any node shows the history
of a partial solution to the n-Queens problem, as queens are added to successive rows. The leaves
correspond to partial solutions that cannot be extended, either because there is already a queen on every
row, or because every position in the next empty row is in the same row, column, or diagonal as an
existing queen. The backtracking algorithm simply performs a traversal of this tree.
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The complete recursion tree for our algorithm for the 4 queens problem.

3.2 Game Trees

Consider the following simple two-player game played on an n× n square grid with a border of squares.
Let’s call the players Horace and Vera. Each player has n tokens that they move across the board from
one side to the other. Horace’s tokens start in the left border, one in each row, and move to the right;
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symmetrically, Vera’s tokens start in the top border, one in each column, and move down. The players
alternate turns. In each of his turns, Horace either moves one of his tokens one step to the right into an
empty square, or jumps one of his tokens over exactly one of Vera’s tokens into an empty square two
steps to the right. However, if no legal moves or jumps are available, Horace simply passes. Similarly,
Vera either moves or jump one of her tokens downward in each of her turns, unless no moves or jumps
are possible. The first player to move all their tokens off the edge of the board wins.

↓

↓ ↓ ↓
→
→
→

↓ ↓ ↓

→
→

↓ ↓
→

→
→

↓

↓ ↓
→

→
↓

↓
→

→
→

↓

↓
↓

→
→

↓

↓
→
→

→
↓

↓
→

→
→

↓ ↓
→

→
→

↓ ↓ ↓
→

→

↓ ↓
→

→
→

↓

↓ ↓ →
→

↓

↓
→

→
→

↓

↓
↓

→
→

↓
↓

→
→

→

↓
↓ ↓

→
→

→
↓

↓

→
→

→
↓ ↓

↓

→
→

↓ ↓

→
→

→

→

→
→

→

→ →

→

↓
↓

↓ ↓

↓
↓ ↓

↓ ↓

Vera wins the 3× 3 game.

We can use a simple backtracking algorithm to determine the best move for each player at each
turn. The state of the game consists of the locations of all the pieces and the player whose turn it is. We
recursively define a game state to be good or bad as follows:

• A game state is bad if all the opposing player’s tokens have reached their goals.

• A game state is good if the current player can move to a state that is bad for the opposing player.

• A configuration is bad if every move leads to a state that is good for the opposing player.

This recursive definition immediately suggests a recursive backtracking algorithm to determine whether
a given state of the game is good or bad. Moreover, for any good state, the backtracking algorithm finds
a move leading to a bad state for the opposing player. Thus, by induction, any player that finds the game
in a good state on their turn can win the game, even if their opponent plays perfectly; on the other hand,
starting from a bad state, a player can win only if their opponent makes a mistake.

All computer game players are ultimately based on this simple backtracking strategy. However, since
most games have an enormous number of states, it is not possible to traverse the entire game tree in
practice. Instead, game programs employ other heuristics1 to prune the game tree, by ignoring states

1A heuristic is an algorithm that doesn’t work.
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The first two levels of the game tree.

that are obviously good or bad (or at least obviously better or worse that other states), and/or by cutting
off the tree at a certain depth (or ply) and using a more efficient heuristic to evaluate the leaves.

3.3 Subset Sum

Let’s consider a more complicated problem, called SUBSETSUM: Given a set X of positive integers and
target integer T , is there a subset of elements in X that add up to T? Notice that there can be more
than one such subset. For example, if X = {8, 6, 7, 5, 3, 10, 9} and T = 15, the answer is TRUE, thanks to
the subsets {8,7} or {7,5,3} or {6,9} or {5,10}. On the other hand, if X = {11,6,5,1,7,13,12} and
T = 15, the answer is FALSE.

There are two trivial cases. If the target value T is zero, then we can immediately return TRUE,
because empty set is a subset of every set X , and the elements of the empty set add up to zero.2 On the
other hand, if T < 0, or if T 6= 0 but the set X is empty, then we can immediately return FALSE.

For the general case, consider an arbitrary element x ∈ X . (We’ve already handled the case where X
is empty.) There is a subset of X that sums to T if and only if one of the following statements is true:

• There is a subset of X that includes x and whose sum is T .

• There is a subset of X that excludes x and whose sum is T .

In the first case, there must be a subset of X \ {x} that sums to T − x; in the second case, there must
be a subset of X \ {x} that sums to T . So we can solve SUBSETSUM(X , T) by reducing it to two simpler
instances: SUBSETSUM(X \ {x}, T − x) and SUBSETSUM(X \ {x}, T). Here’s how the resulting recusive
algorithm might look if X is stored in an array.

SUBSETSUM(X [1 .. n], T ):
if T = 0

return TRUE

else if T < 0 or n= 0
return FALSE

else
return

�

SUBSETSUM(X [2 .. n], T ) ∨ SUBSETSUM(X [2 .. n], T − X [1])
�

Proving this algorithm correct is a straightforward exercise in induction. If T = 0, then the elements
of the empty subset sum to T , so TRUE is the correct output. Otherwise, if T is negative or the set X is

2There’s no base case like the vacuous base case!
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empty, then no subset of X sums to T , so FALSE is the correct output. Otherwise, if there is a subset that
sums to T , then either it contains X [1] or it doesn’t, and the Recursion Fairy correctly checks for each of
those possibilities. Done.

The running time T (n) clearly satisfies the recurrence T (n)≤ 2T (n− 1) +O(1), which we can solve
using either recursion trees or annihilators (or just guessing) to obtain the upper bound T(n) = O(2n).
In the worst case, the recursion tree for this algorithm is a complete binary tree with depth n.

Here is a similar recursive algorithm that actually constructs a subset of X that sums to T , if one
exists. This algorithm also runs in O(2n) time.

CONSTRUCTSUBSET(X [1 .. n], T ):
if T = 0

return ∅
if T < 0 or n= 0

return NONE

Y ← CONSTRUCTSUBSET(X [2 .. n], T )
if Y 6= NONE

return Y

Y ← CONSTRUCTSUBSET(X [2 .. n], T − X [1])
if Y 6= NONE

return Y ∪ {X [1]}

return NONE

3.4 Longest Increasing Subsequence

Now suppose we are given a sequence of integers, and we want to find the longest subsequence whose
elements are in increasing order. More concretely, the input is an array A[1 .. n] of integers, and we want
to find the longest sequence of indices 1≤ i1 < i2 < · · · ik ≤ n such that A[i j]< A[i j+1] for all j.

To derive a recursive algorithm for this problem, we start with a recursive definition of the kinds of
objects we’re playing with: sequences and subsequences.

A sequence of integers is either empty
or an integer followed by a sequence of integers.

This definition suggests the following strategy for devising a recursive algorithm. If the input
sequence is empty, there’s nothing to do. Otherwise, we only need to figure out what to do with the first
element of the input sequence; the Recursion Fairy will take care of everything else. We can formalize
this strategy somewhat by giving a recursive definition of subsequence (using array notation to represent
sequences):

The only subsequence of the empty sequence is the empty sequence.

A subsequence of A[1 .. n] is either a subsequence of A[2 .. n]
or A[1] followed by a subsequence of A[2 .. n].

We’re not just looking for just any subsequence, but a longest subsequence with the property that
elements are in increasing order. So let’s try to add those two conditions to our definition. (I’ll omit the
familiar vacuous base case.)
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The LIS of A[1 .. n] is
either the LIS of A[2 .. n]

or A[1] followed by the LIS of A[2 .. n] with elements larger than A[1],
whichever is longer.

This definition is correct, but it’s not quite recursive—we’re defining the object ‘longest increasing
subsequence’ in terms of the slightly different object ‘longest increasing subsequence with elements
larger than x ’, which we haven’t properly defined yet. Fortunately, this second object has a very similar
recursive definition. (Again, I’m omitting the vacuous base case.)

If A[1]≤ x , the LIS of A[1 .. n] with elements larger than x is
the LIS of A[2 .. n] with elements larger than x .

Otherwise, the LIS of A[1 .. n] with elements larger than x is
either the LIS of A[2 .. n] with elements larger than x

or A[1] followed by the LIS of A[2 .. n] with elements larger than A[1],
whichever is longer.

The longest increasing subsequence without restrictions can now be redefined as the longest increas-
ing subsequence with elements larger than −∞. Rewriting this recursive definition into pseudocode
gives us the following recursive algorithm.

LIS(A[1 .. n]):
return LISBIGGER(−∞, A[1 .. n])

LISBIGGER(prev, A[1 .. n]):
if n= 0

return 0
else

max← LISBIGGER(prev, A[2 .. n])
if A[1]> prev

L← 1+ LISBIGGER(A[1], A[2 .. n])
if L >max

max← L
return max

The running time of this algorithm satisfies the recurrence T(n) ≤ 2T(n− 1) +O(1), which as usual
implies that T (n) = O(2n). We really shouldn’t be surprised by this running time; in the worst case, the
algorithm examines each of the 2n subsequences of the input array.

The following alternative strategy avoids defining a new object with the ‘larger than x ’ constraint.
We still only have to decide whether to include or exclude the first element A[1]. We consider the
case where A[1] is excluded exactly the same way, but to consider the case where A[1] is included, we
remove any elements of A[2 .. n] that are larger than A[1] before we recurse. This new strategy gives us
the following algorithm:

FILTER(A[1 .. n], x):
j← 1
for i← 1 to n

if A[i]> x
B[ j]← A[i]; j← j+ 1

return B[1 .. j]

LIS(A[1 .. n]):
if n= 0

return 0
else

max← LIS(prev, A[2 .. n])
L← 1+ LIS(A[1], FILTER(A[2 .. n], A[1]))
if L >max

max← L
return max
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The FILTER subroutine clearly runs in O(n) time, so the running time of LIS satisfies the recurrence
T(n)≤ 2T(n− 1) +O(n), which solves to T(n)≤ O(2n) by the annihilator method. This upper bound
pessimistically assumes that FILTER never actually removes any elements; indeed, if the input sequence
is sorted in increasing order, this assumption is correct.

3.5 Optimal Binary Search Trees

Our next example combines recursive backtracking with the divide-and-conquer strategy.
Recall that the running time for a successful search in a binary search tree is proportional to the

number of ancestors of the target node.3 As a result, the worst-case search time is proportional to the
depth of the tree. Thus, to minimize the worst-case search time, the height of the tree should be as small
as possible; by this metric, the ideal tree is perfectly balanced.

In many applications of binary search trees, however, it is more important to minimize the total cost
of several searches rather than the worst-case cost of a single search. If x is a more ‘popular’ search
target than y , we can save time by building a tree where the depth of x is smaller than the depth of y ,
even if that means increasing the overall depth of the tree. A perfectly balanced tree is not the best
choice if some items are significantly more popular than others. In fact, a totally unbalanced tree of
depth Ω(n) might actually be the best choice!

This situation suggests the following problem. Suppose we are given a sorted array of n keys A[1 .. n]
and an array of corresponding access frequencies f [1 .. n]. Our task is to build the binary search tree that
minimizes the total search time, assuming that there will be exactly f [i] searches for each key A[i].

Before we think about how to solve this problem, we should first come up with a good recursive
definition of the function we are trying to optimize! Suppose we are also given a binary search tree T
with n nodes. Let vi denote the node that stores A[i], and let r be the index of the root node. Ignoring
constant factors, the cost of searching for A[i] is the number of nodes on the path from the root vr to vi .
Thus, the total cost of performing all the binary searches is given by the following expression:

Cost(T, f [1 .. n]) =
n
∑

i=1

f [i] ·#nodes between vr and vi

Every search path includes the root node vr . If i < r, then all other nodes on the search path to vi are in
the left subtree; similarly, if i > r, all other nodes on the search path to vi are in the right subtree. Thus,
we can partition the cost function into three parts as follows:

Cost(T, f [1 .. n]) =
r−1
∑

i=1

f [i] ·#nodes between left(vr) and vi

+
n
∑

i=1

f [i]

+
n
∑

i=r+1

f [i] ·#nodes between right(vr) and vi

Now the first and third summations look exactly like our original expression (*) for Cost(T, f [1 .. n]).
Simple substitution gives us our recursive definition for Cost:

Cost(T, f [1 .. n]) = Cost(left(T ), f [1 .. r − 1]) +
n
∑

i=1

f [i] + Cost(right(T ), f [r + 1 .. n])

3An ancestor of a node v is either the node itself or an ancestor of the parent of v. A proper ancestor of v is either the parent
of v or a proper ancestor of the parent of v.
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The base case for this recurrence is, as usual, n = 0; the cost of performing no searches in the empty tree
is zero.

Now our task is to compute the tree Topt that minimizes this cost function. Suppose we somehow
magically knew that the root of Topt is vr . Then the recursive definition of Cost(T, f ) immediately implies
that the left subtree left(Topt) must be the optimal search tree for the keys A[1 .. r − 1] and access
frequencies f [1 .. r − 1]. Similarly, the right subtree right(Topt) must be the optimal search tree for the
keys A[r + 1 .. n] and access frequencies f [r + 1 .. n]. Once we choose the correct key to store at
the root, the Recursion Fairy will automatically construct the rest of the optimal tree for us. More
formally, let OptCost( f [1 .. n]) denote the total cost of the optimal search tree for the given frequency
counts. We immediately have the following recursive definition.

OptCost( f [1 .. n]) = min
1≤r≤n

(

OptCost( f [1 .. r − 1]) +
n
∑

i=1

f [i] + OptCost( f [r + 1 .. n])

)

Again, the base case is OptCost( f [1 .. 0]) = 0; the best way to organize no keys, which we will plan to
search zero times, is by storing them in the empty tree!

This recursive definition can be translated mechanically into a recursive algorithm, whose running
time T (n) satisfies the recurrence

T (n) = Θ(n) +
n
∑

k=1

�

T (k− 1) + T (n− k)
�

.

The Θ(n) term comes from computing the total number of searches
∑n

i=1 f [i].
Yeah, that’s one ugly recurrence, but it’s actually easier to solve than it looks. To transform it into a

more familiar form, we regroup and collect identical terms, subtract the recurrence for T (n− 1) to get
rid of the summation, and then regroup again.

T (n) = Θ(n) + 2
n−1
∑

k=0

T (k)

T (n− 1) = Θ(n− 1) + 2
n−2
∑

k=0

T (k)

T (n)− T (n− 1) = Θ(1) + 2T (n− 1)

T (n) = 3T (n− 1) +Θ(1)

The solution T(n) = Θ(3n) now follows from the annihilator method.
Let me emphasize that this recursive algorithm does not examine all possible binary search trees.

The number of binary search trees with n nodes satisfies the recurrence

N(n) =
n−1
∑

r=1

�

N(r − 1) · N(n− r)
�

,

which has the closed-from solution N(n) = Θ(4n/
p

n). Our algorithm saves considerable time by
searching independently for the optimal left and right subtrees. A full enumeration of binary search trees
would consider all possible pairings of left and right subtrees; hence the product in the recurrence for
N(n).
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Exercises

1. (a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence of A and B is both a
subsequence of A and a subsequence of B. Give a simple recursive definition for the function
lcs(A, B), which gives the length of the longest common subsequence of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common supersequence of A and B is
another sequence that contains both A and B as subsequences. Give a simple recursive defini-
tion for the function scs(A, B), which gives the length of the shortest common supersequence
of A and B.

(c) Call a sequence X [1 .. n] oscillating if X [i]< X [i + 1] for all even i, and X [i]> X [i + 1] for
all odd i. Give a simple recursive definition for the function los(A), which gives the length of
the longest oscillating subsequence of an arbitrary array A of integers.

(d) Give a simple recursive definition for the function sos(A), which gives the length of the
shortest oscillating supersequence of an arbitrary array A of integers.

(e) Call a sequence X [1 .. n] accelerating if 2 · X [i]< X [i− 1] + X [i + 1] for all i. Give a simple
recursive definition for the function lxs(A), which gives the length of the longest accelerating
subsequence of an arbitrary array A of integers.

For more backtracking exercises, see the next two lecture notes!
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