
CS 473: Algorithms, Fall 2010

HW 8 (due Tuesday, November 2)

This homework contains four problems. Read the instructions for submitting homework on
the course webpage. In particular, make sure that you write the solutions for the problems on
separate sheets of paper; the sheets for each problem should be stapled together. Write your name
and netid on each sheet.

Collaboration Policy: For this home work, Problems 1-3 can be worked in groups of up to 3
students each.

Problem 0 should be answered in Compass as part of the assessment HW8-Online and
should be done individually.

0. (10 pts) HW8-Online on Compass.

1. (35 pts) Suppose we want to write an efficient function Shuffle(n) that returns a permutation
of the set {1, 2, ..., n} chosen uniformly at random.

(a) Prove that the following algorithm is not correct.[Hint: Consider n = 3.]

Algorithm Shuffle(n)
1. for i←1 to n
2. do π[i]← i
3. for i←1 to n
4. do swap π[i]↔ π[Random(n)]
5. return π[1 . . . n]

(b) Prove that the following implementation of Shuffle(n) is correct. What is its expected
running time?

Algorithm Shuffle(n)
1. for i←1 to n
2. do π[i]← NULL
3. for i←1 to n
4. j ←Random(n)
5. while π[j] 6= NULL
6. do j ←Random(n)
7. π[j]← i
8. return π[1 . . . n]

(c) Describe and analyze an implementation of Shuffle(n) that runs in O(n) time. (An
algorithm that runs in O(n) expected time is fine, but O(n) worst case time is possible).

2. (25 pts) Your friends have written a very fast piece of maximum-flow code based on repeatedly
finding augmenting paths. However, after you have looked at a bit of output from it, you
realize that it’s not always finding a flow of maximum value. The bug turns out to be pretty
easy to find; your friends hadn’t really gotten into the whole backward-edge thing when

1



writing the code, and so their implementation builds a variant of the residual graph that only
includes the forward edges. In other words, it searches for s− t paths in a graph G̃f consisting
only of edges e for which f(e) < ce, and it terminates when there is no augmenting path
consisting entirely of such edges. We’ll call this Forward-Edge-Only Algorithm. (Note that
we do not try to prescribe how this algorithm chooses its forward-edge paths; it may choose
them in any fashion it wants, provided that it terminates only when there are no forward-edge
paths.)

It’s hard to convince your friends they need to reimplement the code. In addition to its
blazing speed, they claim, in fact, that it never returns a flow whose value is less than a fixed
fraction of optimal. Do you believe this? The crux of their claim can be made precise in the
following statement.

There is an absolute constant b > 1 (independent of the particular input flow
network), so that on every instance of Maximum-Flow problem, the Forward-
Edge-Only Algorithm is guaranteed to find a flow of value at least 1/b times the
maximum-flow value (regardless of how it chooses forward-edge paths).

Decide whether you think this algorithm is true or false, and give a proof of either the
statement or its negation.

3. (30 pts) Given a flow network G with integer capacities you have computed a maximum flow
f between s and t. However you have made a mistake in noting the capacity of an edge e.

• (10 pts) Suppose you under estimated the capacity of e by k > 0 units. Show that you
can compute the correct maximum flow in O(km) time using the current flow f .

• (20 pts) Do the same as above if you over estimated the capacity of e by k > 0 units.
Hint: First assume that f is acyclic. How do you reduce flow on e?

2


