
CS 473: Algorithms, Fall 2010

HW 0 (due Tuesday, August 31st in class)

This homework contains four problems. Read the instructions for submitting homework on
the course webpage. In particular, make sure that you write the solutions for the problems on
separate sheets of paper. Write your name and netid on each sheet.

Collaboration Policy: For this home work, each student should work independently and write
up their own solutions and submit them.

Read the course policies before starting the homework. Problems 1-3 should be
answered in Compass as part of the assessment HW0-Online.

Note: Before starting to answer the questions on compass, read the following
recaps:

• lg n = log2 n and lnn = loge n.

• lg2 n = (lg n)2 and lg lg n = lg(lg n).

• Hn is the n’th harmonic number and Hn =
∑n

i=1 1/i ' lnn+ 0.577215 . . ..

• Fn is the n’th Fibonacci number and satisfies the recurrence Fn = Fn−1 + Fn−2 with F0 =
0, F1 = 1. It can be verified by induction (try it!) that Fn = (φn − (−1/φ)n)/

√
5 where

φ = (1 +
√

5)/2 is the golden ratio.

1. (10pts) True/False questions on background.

2. (25pts) Asymptotics.

3. (25 pts) Basic recurrences.

4. (40pts) Euclid’s algorithm for finding the greatest common divisor (gcd) of two non-negative
numbers a, b is the following.

Algorithm Euclid(a, b):
If (b = 0)

return a
Else

return Euclid(b, a mod b)

Prove via induction that the algorithm correctly computes the gcd of a, b. Also prove that
the running time of the algorithm is polynomial in the input size. Note that the input size
is Θ(log a + log b). Assume that the mod operation along with other basic arithmetic
operations take constant time. Hint: For both parts think about how a + b is changing in
each recursive call. A slow version of the Euclid algorithm is the following.

1



Algorithm SlowEuclid(a, b):
If (b > a)

return SlowEuclid(b, a)
Else if (b = 0)

return a
Else

return SlowEuclid(b, a− b)

Verify for yourself that the above algorithm correctly computes the gcd of a and b. Show that
the above algorithm can take exponential time in the input size. You can do this by giving a
class of instances (a1, b1), (a2, b2), . . . , (an, bn), . . . where log an + log bn →∞ and the running
time of the algorithm on (an, bn) is exponential in log an + log bn (the input size) for each n.

2


