CS 473: Algorithms, Fall 2010 HBS 3

Problem 1. [Recurrences]

Solve the following recurrences.

- $T(n)=5 T(n / 4)+n$ and $T(n)=1$ for $1 \leq n<4$.
- $T(n)=2 T(n / 2)+n \log n$
- $T(n)=2 T(n / 2)+3 T(n / 3)+n^{2}$

Problem 2. [Tree Traversal]
Let T be a rooted binary tree on n nodes. The nodes have unique labels from 1 to n.

- Given the preorder and postorder node sequences for T, give a recursive algorithm to reconstruct a tree that satisfies the preorder and postorder sequences. Is this reconstruction unique?
- Given the preorder and inorder node sequences for T, give a recursive algorithm to reconstruct a tree that satisfies the preorder and inorder sequences. Is this reconstruction unique?

Problem 3. [Divide and Conquer]
Let $p=(x, y)$ and $p^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ be two points in the Euclidean plane given by their coordinates. We say that p dominates p^{\prime} if and only if $x>x^{\prime}$ and $y>y^{\prime}$. Given a set of n points $P=\left\{p_{1}, \ldots, p_{n}\right\}$, a point $p_{i} \in P$ is undominated in P if there is no other point $p_{j} \in P$ such that p_{j} dominates p_{i}. Describe an algorithm that given P outputs all the undominated points in P; see figure. Your algorithm should run in time asymptotically faster than $O\left(n^{2}\right)$

Figure 1: The undominated points are shown as unfilled circles.

