CS 473: Algorithms, Fall 2010 HBS 0

1. The following is an inductive proof of the statement that in every tree T = (V(T), E(T)), |E(T)| = |V(T)| - 1, i.e a tree with n vertices has n - 1 edges.

Proof: The proof is by induction on |V(T)|.

Base case: Base case is when |V(T)| = 1. A tree with a single vertex has no edge, so |E(T)| = 0. Therefore in this case the formula is true since 0 = 1 - 1.

Inductive step: Assume that the formula is true for all trees T where |V(T)| = k. We will prove that the formula is true for trees with k+1 nodes. A tree T with k+1 nodes can be obtained from a tree T' with k nodes by attaching a new vertex to a leaf of T'. This way we add exactly one vertex and one edge to T', so |V(T)| = |V(T')| + 1 and |E(T)| = |E(T')| + 1. Since |V(T')| = k by induction hypothesis we have |E(T')| = |V(T')| - 1.

Combining the last three relations we have |E(T)| = |E(T')| + 1 = |V(T')| - 1 + 1 = |V(T)| - 1 - 1 + 1 = |V(T)| - 1, which means that the formula is true for tree T.

Show that the above is *not* a correct inductive proof! You must argue why it is not correct, and in particular produce a tree that the above argument does not cover.

- 2. A k-coloring of a graph G is a labeling $f:V(G)\to S$ from vertices to colors where |S|=k. A k-coloring is proper if adjacent vertices are assigned different colors. A graph is k-colorable if it has a proper k-coloring. Prove that any graph G has a proper $(\Delta+1)$ -coloring where Δ is the maximum degree of a vertex of G (no vertex has more than Δ neighbors). For example, any cycle is 3-colorable as $\Delta=2$ for cycles.
- 3. You are given a $2^n \times 2^n$ chessboard with a single square removed. Prove that you can tile the entire chessboard (minus the missing square) using copies of the 2×2 L's shown below.

- 4. The nth Fibonacci binary tree \mathcal{F}_n is defined recursively as follows:
 - \mathcal{F}_1 is a single root node with no children.
 - For all $n \geq 2$, \mathcal{F}_n is obtained from \mathcal{F}_{n-1} by adding a right child to every leaf and adding a left child to every node that has only one child.

The first six Fibonacci binary trees. In each tree \mathcal{F}_n , the subtree of gray nodes is \mathcal{F}_{n-1} .

- (a) Prove that the number of leaves in \mathcal{F}_n is precisely the nth Fibonacci number: $F_0=0$, $F_1=1$, and $F_n=F_{n-1}+F_{n-2}$ for all $n\geq 2$.
- (b) How many nodes does \mathcal{F}_n have?
- (c) (*) What is the depth of \mathcal{F}_n 's most shallow leaf?