Exam 1 Review

CS461/ECE422 Fall 2010

Exam guidelines

- A single page of supplementary notes is allowed -8.5×11. Both sides. Write as small as you like.
- Closed book
- No calculator
- Students should show work on the exam. They can use supplementary sheets of paper if they run out of room.
- Students can use scratch paper if desired.

Exam logistics

- Exam will be given during normal lecture time in 1310 DCL
- You will be given 50 minutes to complete the exam.

Topics

- Introductory definitions
- Security Policies
- Risk Analysis
- Historical Cryptography
- Symmetric Cryptography
- Public or Asymmetric Cryptography
- Key Management
- Authentication

Risk Analysis

- Understand
- Assets
- Vulnerabilities
- Threats
- Risk
- Qualitative vs Quantitative Analysis
- Quantitative identifies absolute numbers for risk probability and asset value, so can calculate risk exposure, risk leverage
- Qualitative uses relative rankings instead of absolute numbers

Security Policy

- Defines what needs to be done, not how
- How is the mechanism or control
- Organizational or natural language policies
- Read and identify components in an organizational policy or standard
- Hierarchy of policy languages from natural language to formal specifications to configurations

Historical Ciphers

- Transposition
- Rail cipher/N-columnar transposition
- Substitution
- Caesar, Vigenere, book, one-time pad, enigma
- Language-based statistical attacks
- Character frequency analysis
- N -gram frequency analysis

Symmetric Encryption

- Block vs stream encryption
- P = b0, b1, .. bn
- $E(P, k)=E(b 0, k 0)| | E(b 1, k 1)| | ~ . . .$.
- If all ki's are equal and sizeof(bi) generally > 1, $E(P, k)$ is a block cipher
- DES
- Feistel network
- Combination of p-boxes and s-boxes
- 56 bit key and 64 bit block

Symmetric Encryption

- AES
- Iterative encryption
- Multiple key sizes: 128, 192, 256
- Block size: 128
- 1 S box and various permutations

Block Encryption Modes

- Described in text and section 7.2.2 of the Handbook of Applied Cryptography
http://www.cacr.math.uwaterloo.ca/hac/about/chap
- Electronic Codebook (ECB)
- Cipher Block Chaining (CBC)
- Output Feedback (OFB)
- Counter
- Cipher Feedback (CFB)

Mode?

Mode ?

Mode?

Mode?

Other key generation techniques

- Physical randomness
- Linear Feedback Shift Registers
- Nonlinear Feedback Shift Registers

Multiple Encryptions

- Double Encryption doesn't gain much
- Meet-in-the-middle
- Both decrypt and encrypt with test key
- Save both and check against the other for middle values as you check new keys

Public/Asymmetric Encryption

- Two keys
- One key public, eases some bootstrap issues
- Based on "hard problems"
- RSA - factoring composites of large primes
- Diffie Hellman - computing discrete logarithms
- Know equations for RSA and DH
- What values are public and what are private

Cryptographic hashes

- Difference from regular checksums
- Keyed and keyless
- When is each appropriate
- Brute force attack
- Find another message with the same hash value
- Birthday attack
- Standard algorithms
- SHA, MD5, block ciphers in CBC mode
- HMAC to make keyless hash keyed

Key Management

- Long lived vs session keys
- Randomness and pseudo random
- Basic key distribution
- Trusted third party, public key
- Kerberos slides in deck, but hidden
- Certificates
- Hierarchical and web of trust
- Digital signatures
- Several reasons why it is bad to encrypt first

Key management

- Key storage
- Key recovery
- Key escrow
- Should be integrated in to the user's crypto system, authenticated to access escrow system, time bounded message access on unescrow
- ESS/Clipper example

Authentication

- Establish ID
- What you know
- What you have
- What you are
- Where you are
- Spent a lot of time on passwords
- On line vs off line attacks
- Salt
- Anderson's formula
- Challenge Response
- Biometrics

Good luck!

