Authentication

CS461/ECE422
Fall 2010

Reading

- Chapter 12 from Computer Security
- Chapter 10 from Handbook of Applied Cryptography
http://www.cacr.math.uwaterloo.ca/hac/about/ch

Overview

- Basics of an authentication system
- Passwords
- Storage
- Selection
- Breaking them
- One time
- Challenge Response
- Biometrics

Ivanhoe, Sir Walter Scott

- Paraphrased:
(Wamba gains entry to the castle dressed as a friar)
Wamba: Take my disguise and escape, I will stay and die in your place.
Cedric: I can't possibly impersonate a friar, I only speak English.
Wamba: If anyone says anything to you, just say "Pax vobiscum."
Cedric: What does that mean?
Wamba: I don't know, but it works like a charm!

Basics

- Authentication: binding of identity to subject
- Identity is that of external entity (my identity, the Illini Union Bookstore, etc.)
- Subject is computer entity (process, network connection, etc.)

Establishing Identity

- One or more of the following
- What entity knows (e.g. password, private key)
- What entity has (e.g. badge, smart card)
- What entity is (e.g. fingerprints, retinal characteristics)
- Where entity is (e.g. In front of a particular terminal)
- Example: scene from Ivanhoe
- Example: Credit card transaction

Authentication systen

- (A, C, F, L, S)
- A : information that proves identity
- C: information stored on computer and used to validate authentication information
- F : set of complementation functions that generates C; $f: A \rightarrow C$
- L : set of authentication functions that verify identity; $l: A \times C \rightarrow\{$ true, false $\}$
$-S$: functions enabling entity to create, alter information in A or C

Authentication System

Example

- Password system, with passwords stored online in clear text
$-A$ set of strings making up passwords
$-C=A$
$-F$ singleton set of identity function $\{I(a)=a\}$
$-L$ single equality test function $\{\boldsymbol{e q}\}$
$-S$ function to set/change password

storase

- Store as cleartext
- If password file compromised, all passwords revealed
- Encipher file
- Need to have decipherment, encipherment keys in memory
- Reduces to previous problem
- Store one-way hash of password
- If file read, attacker must still guess passwords or invert the hash

Example

- Original UNIX system standard hash function
- Hashes password into 13 char string using one of 4096 hash functions
- As authentication system:
$-A=\{$ strings of 8 chars or less $\}$
$-C=\{2$ char hash id $\| 11$ char hash $\}$
$-F=\{4096$ versions of modified DES \}
$-L=\{\operatorname{login}, s u, \ldots\}$
$-S=\{$ passwd, nispasswd, passwd,$+ \ldots\}$

Dictionary Attacks

- Trial-and-error from a list of potential passwords
- Off-line (type 1): know f and c 's, and repeatedly try different guesses $g \in A$ until the list is done or passwords guessed
- Examples: crack, john-the-ripper
- On-line (type 2): have access to functions in L and try guesses g until some $l(g, c)$ succeeds
- Examples: trying to \log in by guessing a password

Preventing Attacks

- How to prevent this:
- Hide information so that either a, f, or c cannot be found
- Prevents obvious attack from above
- Example: UNIX/Linux shadow password files
- Hides c's
- Block access to all $l \in L$ or result of $l(a, c)$
- Prevents attacker from knowing if guess succeeded
- Example: preventing any logins to an account from a network
- Prevents knowing results of l (or accessing l)

Using Time

Anderson's formula:

- P probability of guessing a password in specified period of time
- G number of guesses tested in 1 time unit
- T number of time units
- N number of possible passwords $(|A|)$
- Then $P \geq \frac{T G}{N}$

Example

- Goal
- Passwords drawn from a 96-char alphabet
- Can test 10^{4} guesses per second
- Probability of a success to be 0.5 over a 365 day period
- What is minimum password length?
- Solution
$-N \geq T G / P=(365 \times 24 \times 60 \times 60) \times 10^{4} / 0.5=6.31 \times 10^{11}$
- Choose s such that $\sum_{j=0}^{s} 96^{j} \geq N$
- So $s \geq 6$, meaning passwords must be at least 6 chars long
- What exactly does that equation mean?

Salting

- Have a set of n complementation functions
- Randomly select one function when registering new authentication info (function S)
- Store ID of complementation function with complementation info
- Attacker must try all n complementation functions to see if his guess matches any password
- When does this help? When does it not?

Salting

- Goal: slow dictionary attacks
- Method: perturb hash function so that:
- Parameter controls which hash function is used
- Parameter differs for each password
- So given n password hashes, and therefore n salts, need to hash guess n
- Doesn't help against attacking a single user
- Does help in bulk attack

Examples

- Vanilla UNIX method
- Use DES to encipher 0 message with password as key; iterate 25 times
- Perturb E table in DES in one of 4096 ways
- 12 bit salt flips entries $0-11$ with entries 24-35
- E Table is per round expansion table
- Alternate methods
- Use salt as first part of input to hash function

Approaches: Password Selection

- Random selection
- Any password from A equally likely to be selected
- See previous example
- Make sure it's random! (e.g. period of 2^{32} is not enough for $(26+10)^{8}$ passwords)
- Key crunching (e.g. hashing) a long key to a sequence of shorter keys
- Pronounceable passwords
- User selection of passwords

Pronounceable Passwords

- Generate phonemes randomly
- Phoneme is unit of sound, e.g. $c v, v c, c v c, v c v$
- Examples: helgoret, juttelon are; przbqxdfl, zxrptglfn are not
- ~ 440 possible phonemes
- 440^{6} possible keys with 6 phonemes (12-18 characters long), about the same as 96^{8}
- Used by GNU Mailman mailing list software (?)

User Selection

- Problem: people pick easy-to-guess passwords
- Based on account names, user names, computer names, place names
- Dictionary words (also reversed, odd capitalizations, control characters, "133t-speak", conjugations or declensions, Torah/Bible/Koran/... words)
- Too short, digits only, letters only
- License plates, acronyms, social security numbers
- Personal characteristics or foibles (pet names, nicknames, etc.)

Picking Good Passwords

- Examples from textbook
- "LlMm*2^Ap"
- Names of members of 2 families
- "OoHeO/FSK"
- Second letter of each word of length 4 or more in third line of third verse of Star-Spangled Banner, followed by "/", followed by author's initials
- What's good here may be bad there
- "DMC/MHmh" bad at Dartmouth ("Dartmouth Medical Center/Mary Hitchcock memorial hospital"), ok here
- Why are these now bad passwords? :

Proactive Password Checking

- Analyze proposed password for "goodness"
- Always invoked
- Can detect, reject bad passwords for an appropriate definition of "bad"
- Discriminate on per-user, per-site basis
- Needs to do pattern matching on words
- Needs to execute subprograms and use results
- Spell checker, for example
- Easy to set up and integrate into password selection system

Guessing Through L

- Cannot prevent these
- Otherwise, legitimate users cannot \log in
- Make them slow
- Backoff
- Disconnection
- Disabling
- Be very careful with administrative accounts!
- Jailing
- Allow in, but restrict activities

Leaking Information

- User friendly system gives cause of login failure
- Bad user vs bad password
- Speed of response may give clue

Trojan Login

- Presented with login interface that appears legitimate
- Means to detect
- Trusted path
- More in next couple lectures
- Recognize last login time stamp
- Recognize previously selected picture
- Certificate

Password Aging

- Force users to change passwords after some time has expired
- How do you force users not to re-use passwords?
- Record previous passwords
- Block changes for a period of time
- Give users time to think of good passwords
- Don't force them to change before they can log in
- Warn them of expiration days in advance

Challenge-Response

- User, system share a secret function f (in practice, f is a known function with unknown parameters, such as a cryptographic key)

One-Time Passwords

- Password that can be used exactly once
- After use, it is immediately invalidated
- Challenge-response mechanism
- Challenge is one of a number of authentications; response is password for that particular number
- Problems
- Synchronization of user, system
- Generation of good random passwords
- Password distribution problem

S/Key

- One-time password scheme based on idea of Lamport
- h one-way hash function (MD5 or SHA-1, for example)
- User chooses initial seed k
- System calculates:

$$
h(k)=k_{1}, h\left(k_{1}\right)=k_{2}, \ldots, h\left(k_{n-1}\right)=k_{n}
$$

- Passwords are reverse order:

$$
p_{1}=k_{n}, p_{2}=k_{n-1}, \ldots, p_{n-1}=k_{2}, p_{n}=k_{1}
$$

S/Key Protocol

System stores maximum number of authentications n, number of next authentication i, last correctly supplied password p_{i-1}.

System computes $h\left(p_{i}\right)=h\left(k_{n-i+1}\right)=k_{n-i+2}=p_{i-1}$. If match with what is stored, system replaces p_{i-1} with p_{i} and increments i.
(Note error in the CSA\&S textbook.)

Hardware Support

- Token-based
- Used to compute response to challenge
- May encipher or hash challenge
- May require PIN from user
- Temporally-based
- Every minute (or so) different number shown
- Computer knows what number to expect when
- User enters number and fixed password

Biometrics

- Automated measurement of biological, behavioural features that identify a person
- Fingerprints: optical or electrical techniques
- Maps fingerprint into a graph, then compares with database
- Measurements imprecise, so approximate matching algorithms used
- Voices: speaker verification or recognition
- Verification: uses statistical techniques to test hypothesis that speaker is who is claimed (speaker dependent)
- Recognition: checks content of answers (speaker independent)

Other Characteristics

- Can use several other characteristics
- Eyes: patterns in irises unique
- Measure patterns, determine if differences are random; or correlate images using statistical tests
- Faces: image, or specific characteristics like distance from nose to chin
- Lighting, view of face, other noise can hinder this
- Keystroke dynamics: believed to be unique
- Keystroke intervals, pressure, duration of stroke, where key is struck
- Statistical tests used

Biometric

- Physical characteristics encoded in a template
- The C or complement information
- User registers physical information (S)
- Generally with multiple measurements
- The L function takes a measurement and tries to line up with template

Authentication vs Identification

- Used for surveillance
- Subject is motivated to avoid detection
- Used for authentication
- Subject is motivated to positively identify
- Perhaps pick up other's characteristics
- False positives vs false negatives

Cautions

- These can be fooled!
- Assumes biometric device accurate in the environment it is being used in!
- Transmission of data to validator is tamperproof, correct (remember pax vobiscum)
- Physical characteristics change over time
- Some people may not be able to identify via specific characteristics
- Albinos and iris scans

Location

- If you know where user is, validate identity by seeing if person is where the user is
- Requires special-purpose hardware to locate user
- GPS (global positioning system) device gives location signature of entity
- Host uses LSS (location signature sensor) to get signature for entity

Multi-Factor Authentication

- Star Trek Example: Voice recognition (what you are) plus code (what you know)
- Can assign different methods to different tasks
- As users perform more and more sensitive tasks, must authenticate in more and more ways (presumably, more stringently)
- File describes authentication required
- Also includes controls on access (time of day, etc.), resources, and requests to change passwords
- Pluggable Authentication Modules

Key Points

- Authentication \neq cryptography
- You have to consider system components
- Passwords are here to stay
- They provide a basis for most forms of authentication
- Biometrics can help but not magic bullet

