
Slide #5-1

Confidentiality Policies

CS461/ECE422 Computer Security I
Fall 2010

Based on slides provided by Matt Bishop for use with
Computer Security: Art and Science

Slide #5-2

Reading

• Chapter 5 in CS
• Bell-LaPadula and McLean papers linked

on class web site if you are interested in the
proofs

Slide #5-3

Outline
• Overview

– Mandatory versus discretionary controls
– What is a confidentiality model

• Bell-LaPadula Model
– General idea
– Description of rules

• Tranquility
• Controversy

– †-property
– System Z

Slide #5-4

MAC vs DAC
• Discretionary Access Control (DAC)

– Normal users can change access control state directly assuming
they have appropriate permissions

– Access control implemented in standard OS’s, e.g., Unix, Linux,
Windows

– Access control is at the discretion of the user
• Mandatory Access Control (MAC)

– Access decisions cannot be changed by normal rules
– Generally enforced by system wide set of rules
– Normal user cannot change access control schema

• “Strong” system security requires MAC
– Normal users cannot be trusted

Slide #5-5

Confidentiality Policy

• Goal: prevent the unauthorized disclosure
of information
– Deals with information flow
– Integrity incidental

• Multi-level security models are best-known
examples
– Bell-LaPadula Model basis for many, or most,

of these

Slide #5-6

Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering
– Top Secret: highest
– Secret
– Confidential
– Unclassified: lowest

• Levels consist of security clearance L(s)
– Objects have security classification L(o)

Bell, LaPadula 73

Slide #5-7

Example

objectsubjectsecurity level

Telephone Lists

Activity Logs

E-Mail Files

Personnel Files

UlaleyUnclassified

ClaireConfidential

SamuelSecret

TamaraTop Secret

• Tamara can read all files
• Claire cannot read Personnel or E-Mail Files
• Ulaley can only read Telephone Lists

Slide #5-8

Reading Information

• Information flows up, not down
– “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
– Subject s can read object o iff, L(o) ≤ L(s) and s

has permission to read o
• Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

Slide #5-9

Writing Information

• Information flows up, not down
– “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
– Subject s can write object o iff L(s) ≤ L(o) and s

has permission to write o
• Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

Slide #5-10

Basic Security Theorem, Step 1

• If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition (step 1), and the
*-property (step 1), then every state of the
system is secure
– Proof: induct on the number of transitions

• Meaning of “secure” in axiomatic

Slide #5-11

Bell-LaPadula Model, Step 2

• Expand notion of security level to include
categories (also called compartments)

• Security level is (clearance, category set)
• Examples

– (Top Secret, { NUC, EUR, ASI })
– (Confidential, { EUR, ASI })
– (Secret, { NUC, ASI })

Slide #5-12

Levels and Lattices
• (A, C) dom (A′, C′) iff A′ ≤ A and C′ ⊆ C
• Examples

– (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
– (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
– (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
– (Secret, {NUC}) ¬dom (Confidential,{NUC, EUR})

• Let C be set of classifications, K set of categories. Set of
security levels L = C × K, dom form lattice
– Partially ordered set
– Any pair of elements

• Has a greatest lower bound
• Has a least upper bound

Slide #5-13

Example Lattice

ASI,NUC ASI,EUR

ASI
EUR

NUC

SL

NUC,EUR

ASI,NUC,EUR

Slide #5-14

Subset Lattice

TS:
NUC,EUR

TS:
NUC,ASI

TS:NUC

S:NUC
C:
NUC,EUR

C:EUR

SL

TS: ASI,
NUC,EUR

Slide #5-15

Levels and Ordering

• Security levels partially ordered
– Any pair of security levels may (or may not) be

related by dom
• “dominates” serves the role of “greater

than” in step 1
– “greater than” is a total ordering, though

Slide #5-16

Reading Information

• Information flows up, not down
– “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 2)
– Subject s can read object o iff L(s) dom L(o)

and s has permission to read o
• Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

Slide #5-17

Writing Information

• Information flows up, not down
– “Writes up” allowed, “writes down” disallowed

• *-Property (Step 2)
– Subject s can write object o iff L(o) dom L(s)

and s has permission to write o
• Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

Slide #5-18

Basic Security Theorem, Step 2
• If a system is initially in a secure state, and every

transition of the system satisfies the simple
security condition (step 2), and the *-property
(step 2), then every state of the system is secure
– Proof: induct on the number of transitions
– In actual Basic Security Theorem, discretionary access

control treated as third property, and simple security
property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to
express the way done here.

Slide #5-19

Problem

• Colonel has (Secret, {NUC, EUR})
clearance

• Major has (Secret, {EUR}) clearance
• Can Major write data that Colonel can read?
• Can Major read data that Colonel wrote?

Slide #5-20

Solution
• Define maximum, current levels for subjects

– maxlevel(s) dom curlevel(s)
• Example

– Treat Major as an object (Colonel is writing to him/her)
– Colonel has maxlevel (Secret, { NUC, EUR })
– Colonel sets curlevel to (Secret, { EUR })
– Now L(Major) dom curlevel(Colonel)

• Colonel can write to Major without violating “no writes down”
– Does L(s) mean curlevel(s) or maxlevel(s)?

• Formally, we need a more precise notation

Slide #5-21

Adjustments to “write up”

• General write permission is both read and
write
– So both simple security condition and *-

property apply
– S dom O and O dom S means S=O

• BLP discuss append as a “pure” write so
writeup still applies

Slide #5-22

DG/UX System
• Provides mandatory access controls

– MAC label identifies security level
– Default labels, but can define others

• Initially
– Subjects assigned MAC label of parent

• Initial label assigned to user, kept in Authorization and
Authentication database

– Object assigned label at creation
• Explicit labels stored as part of attributes
• Implicit labels determined from parent directory

Slide #5-23

MAC Regions

A d m i n i s t r a t i v e R e g i o nA & A d a t a b a s e , a u d i t

U s e r d a t a a n d a p p l i c a t i o n s U s e r R e g i o nH i e r a r c h y
l e v e l s

V P – 1

V P – 2
V P – 3

V P – 4

S i t e e x e c u t a b l e s

T r u s t e d d a t a

E x e c u t a b l e s n o t p a r t o f t h e T C B

R e s e r v e d f o r f u t u r e u s e

V i r u s P r e v e n t i o n R e g i o n

C a t e g o r i e s
V P – 5

E x e c u t a b l e s p a r t o f t h e T C B

IMPL_HI is “maximum” (least upper bound) of all levels
IMPL_LO is “minimum” (greatest lower bound) of all levels

Slide #5-24

Directory Problem

• Process p at MAC_A tries to create file /tmp/x
• /tmp/x exists but has MAC label MAC_B

– Assume MAC_B ¬ dom MAC_A
• Create fails

– Now p knows a file named x with a higher label exists
• Fix: only programs with same MAC label as

directory can create files in the directory
– Now compilation won’t work, mail can’t be delivered

Slide #5-25

Multilevel Directory
• Directory with a set of subdirectories, one per

label
– Not normally visible to user
– p creating /tmp/x actually creates /tmp/d/x where d is

directory corresponding to MAC_A
– All p’s references to /tmp go to /tmp/d

• p cd’s to /tmp/a, then to ..
– System call stat(“.”, &buf) returns inode number of real

directory
– System call dg_stat(“.”, &buf) returns inode of /tmp

Slide #5-26

Object Labels

• Requirement: every file system object
must have MAC label

1. Roots of file systems have explicit MAC
labels
• If mounted file system has no label, it gets

label of mount point
1. Object with implicit MAC label inherits

label of parent

Slide #5-27

Object Labels
• Problem: object has two names

– /x/y/z, /a/b/c refer to same object
– y has explicit label IMPL_HI
– b has explicit label IMPL_B

• Case 1: hard link created while file system on
DG/UX system, so …

1. Creating hard link requires explicit label
• If implicit, label made explicit
• Moving a file makes label explicit

Slide #5-28

Object Labels

• Case 2: hard link exists when file system
mounted

– No objects on paths have explicit labels: paths have
same implicit labels

– An object on path acquires an explicit label: implicit
label of child must be preserved

so …
• Change to directory label makes child labels

explicit before the change

Slide #5-29

Object Labels

• Symbolic links are files, and treated as
such, so …

1. When resolving symbolic link, label of
object is label of target of the link

• System needs access to the symbolic link
itself

Slide #5-30

Using MAC Labels

• Simple security condition implemented
• *-property not fully implemented

– Process MAC must equal object MAC
– Writing allowed only at same security level

• Overly restrictive in practice

Slide #5-31

MAC Tuples

• Up to 3 MAC ranges (one per region)
• MAC range is a set of labels with upper, lower

bound
– Upper bound must dominate lower bound of range

• Examples
1. [(Secret, {NUC}), (Top Secret, {NUC})]
– [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
1. [(Confidential, {ASI}), (Secret, {NUC, ASI})]

Slide #5-32

MAC Ranges

1. [(Secret, {NUC}), (Top Secret, {NUC})]
• [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
1. [(Confidential, {ASI}), (Secret, {NUC, ASI})]
• (Top Secret, {NUC}) in ranges 1, 2
• (Secret, {NUC, ASI}) in ranges 2, 3
• [(Secret, {ASI}), (Top Secret, {EUR})] not valid

range
– as (Top Secret, {EUR}) ¬dom (Secret, {ASI})

Slide #5-33

Objects and Tuples

• Objects must have MAC labels
– May also have MAC label
– If both, tuple overrides label

• Example
– Paper has MAC range:

[(Secret, {EUR}), (Top Secret, {NUC, EUR})]

Slide #5-34

MAC Tuples
• Process can read object when:

– Object MAC range (lr, hr); process MAC label pl
– pl dom hr

• Process MAC label grants read access to upper bound of range

• Example
– Peter, with label (Secret, {EUR}), cannot read paper

• (Secret, {EUR}) ¬ dom (Top Secret, {NUC, EUR})
– Paul, with label (Top Secret, {NUC, EUR, ASI}) can read

paper
• (Top Secret, {NUC, EUR, ASI}) dom (Top Secret, {NUC, EUR})

Slide #5-35

MAC Tuples
• Process can write object when:

– Object MAC range (lr, hr); process MAC label pl
– pl ∈ (lr, hr)

• Process MAC label grants write access to any label in range
• Example

– Peter, with label (Secret, {EUR}), can write paper
• (Top Secret, {NUC, EUR}) dom (Secret, {EUR}) and (Secret,

{EUR}) dom (Secret, {EUR})
– Paul, with label (Top Secret, {NUC, EUR, ASI}), cannot

read paper
• (Top Secret, {NUC, EUR}) ¬ dom (Top Secret, {NUC, EUR,

ASI})

Slide #5-36

Formal Model

• S subjects, O objects, P rights
– Defined rights: r read, a write, w read/write, e

empty
• M set of possible access control matrices

– That is, m ∈ M iff m ⊆ S × O × P
• Let C be a set of clearances, and K a set of

categories
– L = C × K set of security levels

Slide #5-37

Security Level Assignments

• F = { (fs, fo, fc) }
• fs : S → L

– fs(s) maximum security level of subject s

• fo : S → L
– fo(o) security level of object o

• fc : S → L
– fc(s) current security level of subject s

Slide #5-38

More Definitions
• Hierarchy functions h: O → P(O)
• Requirements

– oi ≠ oj ⇒ h(oi) ∩ h(oj) = ∅
– There is no set { o1, …, ok+1 } ⊆ O such that, for i = 1,

…, k, oi+1 ∈h(oi) and ok+1 = o1.
• Defines a tree

– Tree hierarchy; take h(o) to be the set of children of o
– No two objects have any common children (#1)
– There are no loops (#2)

Slide #5-39

States and Requests

• V set of states
– v = (b, m, f, h) ∈ M × M × F × (O → P(O))

• b mandatory rights
• m discretionary rights
• b is like m, but excludes rights not allowed by f

• R set of requests for access
• D set of outcomes

– y allowed, n not allowed, i illegal, o error

Slide #5-40

Actions

• W set of actions of the system
– W ⊆ R × D × V × V
– (r,v) transitions to (d,v’)

v v’
r yields d

(r, d, v, v’) ∈ W

Slide #5-41

History

• X = set of sequences (r1, r2, …, rt) of requests, t ∈ N
and t >1

• Y = set of sequences (d1, d2, …, dt) of decisions, t ∈
N and t >1

• Z = set of sequences (v0, v1, …, vt) of states, t ∈ N
• Interpretation

– At time t ∈ N, system is in state zt–1 ∈ V; request xt ∈ R
causes system to make decision yt ∈ D, transitioning the
system into a (possibly new) state zt ∈ V

Slide #5-42

History Continued

• System representation
� Σ(R, D, W, z0) ∈ X × Y × Z
– (x, y, z) ∈ Σ(R, D, W, z0) iff (xt, yt, zt, zt–1,) ∈ W

for all t
– (x, y, z) called an appearance of Σ(R, D, W, z0)
– Each zt in an appearance (x, y, z) is a state of the

system
z0 z1

x1 yields y1
z2

x2 yields y2
z3

x3 yields y3

(x1, y1, z0, z1) ∈ W

Slide #5-43

Rules

• A function ρ : R × V → D × V together with
a start state determines a system

z0 z1
x1 yields ρ(x1,z0)

z2
x2 yields ρ(x2,z1)

z3
x3 yields ρ(x3,z2)

Slide #5-44

Example

• S = { s }, O = { o }, P = { r, w }
• C = { High, Low }, K = { All }
• For every f ∈ F, either fc(s) = (High, { All }) or

fc(s) = (Low, { All })
• Initial State:

– b1 = { (s, o, r) }, m1 ∈ M gives s read access over o, and
for f1 ∈ F, fc,1(s) = (High, {All}), fo,1(o) = (Low, {All})

– Call this state v0 = (b1, m1, f1, h1) ∈ V.

Slide #5-45

First Transition

• Now suppose in state v0: S = { s, s′ }
• Suppose fc,1(s′) = (Low, {All})
• m1 ∈ M gives s and s′ read access over o
• As s′ not written to o, b1 = { (s, o, r) }
• z0 = v0; if s′ requests r1 to write to o:

– System decides d1 = y
– New state v1 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }
– Here, x = (r1), y = (y), z = (v0, v1)

Slide #5-46

Second Transition

• Current state v1 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }

– fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })

• s´ requests r2 to write to o:
– System decides d2 = n (as fc,1(s) dom fo,1(o))

– New state v2 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }

– So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1

Slide #5-47

Basic Security Theorem

• Define action, secure formally
– Using a bit of foreshadowing for “secure”

• Restate properties formally
– Simple security condition
– *-property
– Discretionary security property

• State conditions for properties to hold
• State Basic Security Theorem

Slide #5-48

Action
• A request and decision that causes the system to

move from one state to another
– Final state may be the same as initial state

• (r, d, v, v′) ∈ R × D × V × V is an action of Σ(R, D,
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and a
t ∈ N such that (r, d, v, v′) = (xt, yt, zt–1, zt,)
– Request r made when system in state v; decision d

moves system into (possibly the same) state v′
– Correspondence with (xt, yt, zt–1, zt,) makes states,

requests, part of a sequence

Slide #5-49

Simple Security Condition
• (s, o, p) ∈ S × O × P satisfies the simple security

condition relative to f (written ssc rel f) iff one of
the following holds:

– p = e or p = a
– p = r or p = w and fs(s) dom fo(o)

• Holds vacuously if rights do not involve reading
• If all elements of b satisfy ssc rel f, then state

satisfies simple security condition
• If all states satisfy simple security condition,

system satisfies simple security condition

e empty
a write
r read

w read/write

Slide #5-50

Necessary and Sufficient

∀ Σ(R, D, W, z0) satisfies the simple security
condition for a secure state z0 iff every action (r, d,
(b, m, f, h), (b′, m′, f′, h′)) satisfies
– Every (s, o, p) ∈ b – b′ satisfies ssc rel f
– Every (s, o, p) ∈ b′ that does not satisfy ssc rel f is not

in b
• Note: “secure” means z0 satisfies ssc rel f
• First says every (s, o, p) added satisfies ssc rel f;

second says any (s, o, p) in b′ that does not satisfy
ssc rel f is deleted

Slide #5-51

*-Property
• b(s: p1, …, pn) set of all objects that s has p1, …, pn access

to
• State (b, m, f, h) satisfies the *-property iff for each s ∈ S

the following hold:
– b(s: a) ≠ ∅ ⇒ [∀o ∈b(s: a) [fo(o) dom fc(s)]]
– b(s: w) ≠ ∅ ⇒ [∀o ∈b(s: w) [fo(o) = fc(s)]]
– b(s: r) ≠ ∅ ⇒ [∀o ∈b(s: r) [fc(s) dom fo(o)]]

• Idea: for writing, object dominates subject; for reading,
subject dominates object

Slide #5-52

*-Property

• If all states satisfy simple security
condition, system satisfies simple security
condition

• If a subset S′ of subjects satisfy *-property,
then *-property satisfied relative to S′ ⊆ S

Slide #5-53

Necessary and Sufficient

∀ Σ(R, D, W, z0) satisfies the *-property relative to S′ ⊆ S for
any secure state z0 iff every action (r, d, (b, m, f, h), (b′, m′,
f′, h′)) satisfies the following for every s ∈ S′
– Every (s, o, p) ∈ b – b´ satisfies the *-property relative to S′
– Every (s, o, p) ∈ b´ that does not satisfy the *-property relative to

S′ is not in b
• Note: “secure” means z0 satisfies *-property relative to S′
• First says every (s, o, p) added satisfies the *-property

relative to S′; second says any (s, o, p) in b′ that does not
satisfy the *-property relative to S′ is deleted

Slide #5-54

Discretionary Security Property
• State (b, m, f, h) satisfies the discretionary

security property iff, for each (s, o, p) ∈ b, then p
∈ m[s, o]

• Idea: if s can read o, then it must have rights to
do so in the access control matrix m

• This is the discretionary access control part of
the model

– The other two properties are the mandatory access
control parts of the model

Slide #5-55

Necessary and Sufficient

∀ Σ(R, D, W, z0) satisfies the ds-property for any
secure state z0 iff every action (r, d, (b, m, f, h), (b′,
m′, f′, h′)) satisfies:
– Every (s, o, p) ∈ b – b′ satisfies the ds-property
– Every (s, o, p) ∈ b′ that does not satisfy the ds-property

is not in b
• Note: “secure” means z0 satisfies ds-property
• First says every (s, o, p) added satisfies the ds-

property; second says any (s, o, p) in b′ that does
not satisfy the *-property is deleted

Slide #5-56

Secure

• A system is secure iff it satisfies:
– Simple security condition
– *-property
– Discretionary security property

• A state meeting these three properties is
also said to be secure

Slide #5-57

Basic Security Theorem

∀Σ(R, D, W, z0) is a secure system if z0 is a
secure state and W satisfies the conditions
for the preceding three theorems
– The theorems are on the slides titled

“Necessary and Sufficient”

Slide #5-58

Example Instantiation: Multics
• 11 rules affect rights:

– set to request, release access
– set to give, remove access to different subject
– set to create, reclassify objects
– set to remove objects
– set to change subject security level

• Set of “trusted” subjects ST ⊆ S
– *-property not enforced; subjects trusted not to violate

∀ ∆(ρ) domain of a rule ρ
– determines if components of request are valid

Bell, LaPadula 75

Slide #5-59

get-read Rule

• Request r = (get, s, o, r)
– s gets (requests) the right to read o

• Rule is ρ1(r, v):
if (r ≠ ∆(ρ1)) then ρ1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]

and r ∈ m[s, o])
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));

else ρ1(r, v) = (n, v);

Slide #5-60

Security of Rule

• The get-read rule preserves the simple
security condition, the *-property relative to
S - ST, and the ds-property
– Proof

• Let v satisfy all conditions. Let ρ1(r, v) = (d, v′). If
v′ = v, result is trivial. Suppose v′ = (b′ ∪ { (s2, o,
r)}, m, f, h) where b′ = b ∪ { (s2, o, r) }.

Slide #5-61

Proof

• Consider the simple security condition.
– From the choice of v′, either b′ – b = ∅ or { (s2, o, r) }

– If b′ – b = ∅, then { (s2, o, r) } ∈ b, so v = v′, proving
that v′ satisfies the simple security condition.

– If b′ – b = { (s2, o, r) }, because the get-read rule
requires that fc(s) dom fo(o), an earlier result says that v´
satisfies the simple security condition.

Slide #5-62

Proof

• Consider the *-property relative to S - ST.
– Either s2 ∈ ST or fc(s) dom fo(o) from the definition of

get-read
– If s2 ∈ ST, then there is nothing to prove.

– If fc(s) dom fo(o), then condition 3 of the *-property is
trivially satisfied.

Slide #5-63

Proof

• Consider the discretionary security property.
– Conditions in the get-read rule require r ∈ m[s, o] and

either b′ – b = ∅ or { (s2, o, r) }

– If b′ – b = ∅, then { (s2, o, r) } ∈ b, so v = v′, proving
that v´ satisfies the simple security condition.

– If b′ – b = { (s2, o, r) }, then (s2, o, r) is in m because
that is a condition in the definition of ρ1.

Slide #5-64

Principle of Tranquility
• Raising object’s security level

– Information once available to some subjects is no
longer available

– Usually assume information has already been accessed,
so this does nothing

• Lowering object’s security level
– The declassification problem
– Essentially, a “write down” violating *-property
– Solution: define set of trusted subjects that sanitize or

remove sensitive information before security level
lowered

Slide #5-65

Types of Tranquility

• Strong Tranquility
– The clearances of subjects, and the

classifications of objects, do not change during
the lifetime of the system

• Weak Tranquility
– The clearances of subjects, and the

classifications of objects change in accordance
with a specified policy.

Slide #5-66

Example

• DG/UX System
– Only a trusted user (security administrator) can lower

object’s security level
– In general, process MAC labels cannot change

• If a user wants a new MAC label, needs to initiate new process
• Cumbersome, so user can be designated as able to change

process MAC label within a specified range

• Other systems allow multiple labeled windows to
address users operating a multiple levels

Slide #5-67

Controversy

• McLean:
– “value of the BST is much overrated since there

is a great deal more to security than it captures.
Further, what is captured by the BST is so
trivial that it is hard to imagine a realistic
security model for which it does not hold.”

– Basis: given assumptions known to be non-
secure, BST can prove a non-secure system to
be secure

McLean 85

Slide #5-68

†-Property
• State (b, m, f, h) satisfies the †-property iff for each s ∈ S

the following hold:
– b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [fc(s) dom fo(o)]]
– b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [fo(o) = fc(s)]]
– b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [fc(s) dom fo(o)]]

• Idea: for writing, subject dominates object; for reading,
subject also dominates object

• Differs from *-property in that the mandatory condition for
writing is reversed
– For *-property, it’s object dominates subject

Slide #5-69

Analogues

The following two theorems can be proved
∀ Σ(R, D, W, z0) satisfies the †-property relative to S′ ⊆ S for

any secure state z0 iff for every action (r, d, (b, m, f, h), (b′,
m′, f′, h′)), W satisfies the following for every s ∈ S´
– Every (s, o, p) ∈ b – b′ satisfies the †-property relative to S′
– Every (s, o, p) ∈ b′ that does not satisfy the †-property relative to

S′ is not in b

∀ Σ(R, D, W, z0) is a secure system if z0 is a secure state and
W satisfies the conditions for the simple security condition,
the †-property, and the ds-property.

Slide #5-70

Problem

• This system is clearly non-secure!
– Information flows from higher to lower because

of the †-property

Slide #5-71

System Z

• Only one transition rule
– Get-read(s,o), if s dom o allow read and set all objects

to system low
• This system meets BLP requirements for security

given weak tranquility
– Given secure initial state, each subsequent state is

secure
• Points out the need to evaluate the transition rules

Slide #5-72

Discussion
• Role of Basic Security Theorem is to demonstrate

that rules preserve security
• Key question: what is security?

– Bell-LaPadula defines it in terms of 3 properties
(simple security condition, *-property, discretionary
security property)

– Theorems are assertions about these properties
– Rules describe changes to a particular system

instantiating the model
– Showing system is secure requires proving rules

preserve these 3 properties

Slide #5-73

Key Points

• Confidentiality models restrict flow of
information

• Bell-LaPadula models multilevel security
– Cornerstone of much work in computer security

• Controversy over meaning of security
– Different definitions produce different results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

