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Confidentiality Policies

CS461/ECE422 Computer Security I
Fall 2010

Based on slides provided by Matt Bishop for use with 
Computer Security: Art and Science
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Reading

• Chapter 5 in CS
• Bell-LaPadula and McLean papers linked 

on class web site if you are interested in the 
proofs
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Outline
• Overview

– Mandatory versus discretionary controls
– What is a confidentiality model

• Bell-LaPadula Model
– General idea
– Description of rules

• Tranquility
• Controversy

– †-property
– System Z
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MAC vs DAC
• Discretionary Access Control (DAC)

– Normal users can change access control state directly assuming 
they have appropriate permissions

– Access control implemented in standard OS’s, e.g., Unix, Linux, 
Windows

– Access control is at the discretion of the user
• Mandatory Access Control (MAC)

– Access decisions cannot be changed by normal rules
– Generally enforced by system wide set of rules
– Normal user cannot change access control schema

• “Strong” system security requires MAC
– Normal users cannot be trusted
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Confidentiality Policy

• Goal: prevent the unauthorized disclosure 
of information
– Deals with information flow
– Integrity incidental

• Multi-level security models are best-known 
examples
– Bell-LaPadula Model basis for many, or most, 

of these
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Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering
– Top Secret: highest
– Secret
– Confidential
– Unclassified: lowest

• Levels consist of security clearance L(s)
– Objects have security classification L(o)

Bell, LaPadula 73
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Example

objectsubjectsecurity level

Telephone Lists

Activity Logs

E-Mail Files

Personnel Files

UlaleyUnclassified

ClaireConfidential

SamuelSecret

TamaraTop Secret

• Tamara can read all files
• Claire cannot read Personnel or E-Mail Files
• Ulaley can only read Telephone Lists
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Reading Information

• Information flows up, not down
– “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 1)
– Subject s can read object o iff, L(o) ≤ L(s) and s 

has permission to read o
• Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no reads up” rule
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Writing Information

• Information flows up, not down
– “Writes up” allowed, “writes down” disallowed

• *-Property (Step 1)
– Subject s can write object o iff L(s) ≤ L(o) and s 

has permission to write o
• Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no writes down” rule
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Basic Security Theorem, Step 1

• If a system is initially in a secure state, and 
every transition of the system satisfies the 
simple security condition (step 1), and the 
*-property (step 1), then every state of the 
system is secure
– Proof: induct on the number of transitions

• Meaning of “secure” in axiomatic
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Bell-LaPadula Model, Step 2

• Expand notion of security level to include 
categories (also called compartments)

• Security level is (clearance, category set)
• Examples

– ( Top Secret, { NUC, EUR, ASI } )
– ( Confidential, { EUR, ASI } )
– ( Secret, { NUC, ASI } )
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Levels and Lattices
• (A, C) dom (A′, C′) iff A′ ≤ A and C′ ⊆ C
• Examples

– (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
– (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
– (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
– (Secret, {NUC}) ¬dom (Confidential,{NUC, EUR})

• Let C be set of classifications, K set of categories. Set of 
security levels L = C × K, dom form lattice
– Partially ordered set
– Any pair of elements

• Has a greatest lower bound
• Has a least upper bound
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Example Lattice

ASI,NUC ASI,EUR

ASI
EUR

NUC

SL

NUC,EUR

ASI,NUC,EUR
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Subset Lattice

TS:
NUC,EUR

TS:
NUC,ASI

TS:NUC

S:NUC
C:
NUC,EUR

C:EUR

SL

TS: ASI,
NUC,EUR
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Levels and Ordering

• Security levels partially ordered
– Any pair of security levels may (or may not) be 

related by dom
• “dominates” serves the role of “greater 

than” in step 1
– “greater than” is a total ordering, though
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Reading Information

• Information flows up, not down
– “Reads up” disallowed, “reads down” allowed

• Simple Security Condition (Step 2)
– Subject s can read object o iff L(s) dom L(o) 

and s has permission to read o
• Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no reads up” rule
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Writing Information

• Information flows up, not down
– “Writes up” allowed, “writes down” disallowed

• *-Property (Step 2)
– Subject s can write object o iff L(o) dom L(s) 

and s has permission to write o
• Note: combines mandatory control (relationship of 

security levels) and discretionary control (the 
required permission)

– Sometimes called “no writes down” rule
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Basic Security Theorem, Step 2
• If a system is initially in a secure state, and every 

transition of the system satisfies the simple 
security condition  (step 2), and the *-property 
(step 2), then every state of the system is secure
– Proof: induct on the number of transitions
– In actual Basic Security Theorem, discretionary access 

control treated as third property, and simple security 
property and *-property phrased to eliminate 
discretionary part of the definitions — but simpler to 
express the way done here.
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Problem

• Colonel has (Secret, {NUC, EUR}) 
clearance

• Major has (Secret, {EUR}) clearance
• Can Major write data that Colonel can read?
• Can Major read data that Colonel wrote?



Slide #5-20

Solution
• Define maximum, current levels for subjects

– maxlevel(s) dom curlevel(s)
• Example

– Treat Major as an object (Colonel is writing to him/her)
– Colonel has maxlevel (Secret, { NUC, EUR })
– Colonel sets curlevel to (Secret, { EUR })
– Now L(Major) dom curlevel(Colonel)

• Colonel can write to Major without violating “no writes down”
– Does L(s) mean curlevel(s) or maxlevel(s)?

• Formally, we need a more precise notation
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Adjustments to “write up”

• General write permission is both read and 
write
– So both simple security condition and *-

property apply
– S dom O and O dom S means S=O

• BLP discuss append as a “pure” write so 
writeup still applies
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DG/UX System
• Provides mandatory access controls

– MAC label identifies security level
– Default labels, but can define others

• Initially
– Subjects assigned MAC label of parent

• Initial label assigned to user, kept in Authorization and 
Authentication database

– Object assigned label at creation
• Explicit labels stored as part of attributes
• Implicit labels determined from parent directory
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MAC Regions

A d m i n i s t r a t i v e  R e g i o nA & A  d a t a b a s e ,  a u d i t

U s e r  d a t a  a n d  a p p l i c a t i o n s U s e r  R e g i o nH i e r a r c h y
l e v e l s

V P – 1

V P – 2
V P – 3

V P – 4

S i t e  e x e c u t a b l e s

T r u s t e d  d a t a

E x e c u t a b l e s  n o t  p a r t  o f  t h e  T C B

R e s e r v e d  f o r  f u t u r e  u s e

V i r u s  P r e v e n t i o n  R e g i o n

C a t e g o r i e s
V P – 5

E x e c u t a b l e s  p a r t  o f  t h e  T C B

IMPL_HI is “maximum” (least upper bound) of all levels
IMPL_LO is “minimum” (greatest lower bound) of all levels
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Directory Problem

• Process p at MAC_A tries to create file /tmp/x
• /tmp/x exists but has MAC label MAC_B

– Assume MAC_B ¬ dom MAC_A
• Create fails

– Now p knows a file named x with a higher label exists
• Fix: only programs with same MAC label as 

directory can create files in the directory
– Now compilation won’t work, mail can’t be delivered



Slide #5-25

Multilevel Directory
• Directory with a set of subdirectories, one per 

label
– Not normally visible to user
– p creating /tmp/x actually creates /tmp/d/x where d is 

directory corresponding to MAC_A
– All p’s references to /tmp go to /tmp/d

• p cd’s to /tmp/a, then to ..
– System call stat(“.”, &buf) returns inode number of real 

directory
– System call dg_stat(“.”, &buf) returns inode of /tmp
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Object Labels

• Requirement: every file system object 
must have MAC label

1. Roots of file systems have explicit MAC 
labels
• If mounted file system has no label, it gets 

label of mount point
1. Object with implicit MAC label inherits 

label of parent
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Object Labels
• Problem: object has two names

– /x/y/z, /a/b/c refer to same object
– y has explicit label IMPL_HI
– b has explicit label IMPL_B

• Case 1: hard link created while file system on 
DG/UX system, so …

1. Creating hard link requires explicit label
• If implicit, label made explicit
• Moving a file makes label explicit
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Object Labels

• Case 2: hard link exists when file system 
mounted

– No objects on paths have explicit labels: paths have 
same implicit labels

– An object on path acquires an explicit label: implicit 
label of child must be preserved

so …
• Change to directory label makes child labels 

explicit before the change
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Object Labels

• Symbolic links are files, and treated as 
such, so …

1. When resolving symbolic link, label of 
object is label of target of the link

• System needs access to the symbolic link 
itself
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Using MAC Labels

• Simple security condition implemented
• *-property not fully implemented

– Process MAC must equal object MAC
– Writing allowed only at same security level

• Overly restrictive in practice
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MAC Tuples

• Up to 3 MAC ranges (one per region)
• MAC range is a set of labels with upper, lower 

bound
– Upper bound must dominate lower bound of range

• Examples
1. [(Secret, {NUC}), (Top Secret, {NUC})]
– [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
1. [(Confidential, {ASI}), (Secret, {NUC, ASI})]
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MAC Ranges

1. [(Secret, {NUC}), (Top Secret, {NUC})]
• [(Secret, ∅), (Top Secret, {NUC, EUR, ASI})]
1. [(Confidential, {ASI}), (Secret, {NUC, ASI})]
• (Top Secret, {NUC}) in ranges 1, 2
• (Secret, {NUC, ASI}) in ranges 2, 3
• [(Secret, {ASI}), (Top Secret, {EUR})] not valid 

range
– as (Top Secret, {EUR}) ¬dom (Secret, {ASI})
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Objects and Tuples

• Objects must have MAC labels
– May also have MAC label
– If both, tuple overrides label

• Example
– Paper has MAC range:

[(Secret, {EUR}), (Top Secret, {NUC, EUR})]
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MAC Tuples
• Process can read object when:

– Object MAC range (lr, hr); process MAC label pl
– pl dom hr

• Process MAC label grants read access to upper bound of range

• Example
– Peter, with label (Secret, {EUR}), cannot read paper

• (Secret, {EUR}) ¬ dom (Top Secret, {NUC, EUR}) 
– Paul, with label (Top Secret, {NUC, EUR, ASI}) can read 

paper
• (Top Secret, {NUC, EUR, ASI})  dom (Top Secret, {NUC, EUR})
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MAC Tuples
• Process can write object when:

– Object MAC range (lr, hr); process MAC label pl
– pl ∈ (lr, hr)

• Process MAC label grants write access to any label in range
• Example

– Peter, with label (Secret, {EUR}), can write paper
• (Top Secret, {NUC, EUR}) dom (Secret, {EUR}) and (Secret, 

{EUR}) dom (Secret, {EUR})
– Paul, with label (Top Secret, {NUC, EUR, ASI}), cannot 

read paper
• (Top Secret, {NUC, EUR}) ¬ dom (Top Secret, {NUC, EUR, 

ASI})
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Formal Model

• S subjects, O objects, P rights
– Defined rights: r read, a write, w read/write, e 

empty
• M set of possible access control matrices

– That is, m ∈ M iff m ⊆ S × O × P
• Let C be a set of clearances, and K a set of 

categories
– L = C × K set of security levels
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Security Level Assignments

• F  = { ( fs, fo, fc) } 
• fs : S → L

– fs(s) maximum security level of subject s

• fo : S → L
– fo(o) security level of object o

• fc : S → L
– fc(s) current security level of subject s
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More Definitions
• Hierarchy functions h: O → P(O)
• Requirements

–  oi ≠ oj ⇒ h(oi ) ∩ h(oj ) = ∅
–  There is no set { o1, …, ok+1 } ⊆ O such that, for i = 1, 

…, k, oi+1 ∈h(oi ) and ok+1 = o1.
• Defines a tree

– Tree hierarchy; take h(o) to be the set of children of o
– No two objects have any common children (#1)
– There are no loops (#2)
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States and Requests

• V set of states
– v = (b, m, f, h) ∈ M × M × F × (O → P(O))

• b mandatory rights
• m discretionary rights
• b is like m, but excludes rights not allowed by f

• R set of requests for access
• D set of outcomes

– y allowed, n not allowed, i illegal, o error
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Actions

• W set of actions of the system
– W ⊆ R × D × V × V
– (r,v) transitions to (d,v’)

v v’
r yields d

(r, d, v, v’) ∈ W
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History

• X = set of sequences (r1, r2, …, rt) of requests, t ∈ N 
and t >1

• Y = set of sequences (d1, d2, …, dt) of decisions, t ∈ 
N and t >1

• Z = set of sequences (v0, v1, …, vt) of states, t ∈ N
• Interpretation

– At time t ∈ N, system is in state zt–1 ∈ V; request xt ∈ R 
causes system to make decision yt ∈ D, transitioning the 
system into a (possibly new) state zt ∈ V



Slide #5-42

History Continued

• System representation
� Σ(R, D, W, z0) ∈ X × Y × Z
– (x, y, z) ∈ Σ(R, D, W, z0) iff (xt, yt, zt, zt–1,) ∈ W 

for all t
– (x, y, z) called an appearance of Σ(R, D, W, z0)
– Each zt in an appearance (x, y, z) is a state of the 

system
z0 z1

x1 yields y1
z2

x2 yields y2
z3

x3 yields y3

(x1, y1, z0, z1) ∈ W
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Rules

• A function ρ : R × V → D × V together with 
a start state determines a system

z0 z1
x1 yields ρ(x1,z0)

z2
x2 yields ρ(x2,z1)

z3
x3 yields ρ(x3,z2)
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Example

• S = { s }, O = { o }, P = { r, w }
• C = { High, Low }, K = { All }
• For every f ∈ F, either  fc(s) = ( High, { All }) or 

fc(s) = ( Low, { All })
• Initial State:

– b1 = { (s, o, r) }, m1 ∈ M gives s read access over o, and 
for f1 ∈ F, fc,1(s) = (High, {All}), fo,1(o) = (Low, {All})

– Call this state v0 = (b1, m1, f1, h1) ∈ V.
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First Transition

• Now suppose in state v0: S = { s, s′ }
• Suppose fc,1(s′) = (Low, {All})
• m1 ∈ M gives s and s′ read access over o
• As s′ not written to o, b1 = { (s, o, r) }
• z0 = v0; if s′ requests r1 to write to o:

– System decides d1 = y
– New state v1 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }
– Here, x = (r1), y = (y), z = (v0, v1)
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Second Transition

• Current state v1 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }

– fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })

• s´ requests r2 to write to o:
– System decides d2 = n (as fc,1(s) dom fo,1(o))

– New state v2 = (b2, m1, f1, h1) ∈ V
– b2 = { (s, o, r), (s′, o, w) }

– So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1
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Basic Security Theorem

• Define action, secure formally
– Using a bit of foreshadowing for “secure”

• Restate properties formally
– Simple security condition
– *-property
– Discretionary security property

• State conditions for properties to hold
• State Basic Security Theorem
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Action
• A request and decision that causes the system to 

move from one state to another
– Final state may be the same as initial state

• (r, d, v, v′) ∈ R × D × V × V is an action of Σ(R, D, 
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and a 
t ∈ N such that (r, d, v, v′) = (xt, yt, zt–1, zt,)
– Request r made when system in state v; decision d 

moves system into (possibly the same) state v′
– Correspondence with (xt, yt, zt–1, zt,) makes states, 

requests, part of a sequence
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Simple Security Condition
• (s, o, p) ∈ S × O × P satisfies the simple security 

condition relative to f (written ssc rel f) iff one of 
the following holds:

–  p = e or p = a
–  p = r or p = w and fs(s) dom fo(o)

• Holds vacuously if rights do not involve reading
• If all elements of b satisfy ssc rel f, then state 

satisfies simple security condition
• If all states satisfy simple security condition, 

system satisfies simple security condition

e empty
a write
r read

w read/write
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Necessary and Sufficient

∀ Σ(R, D, W, z0) satisfies the simple security 
condition for a secure state z0 iff every action (r, d, 
(b, m, f, h), (b′, m′, f′, h′)) satisfies
– Every (s, o, p) ∈ b – b′ satisfies ssc rel f
– Every (s, o, p) ∈ b′ that does not satisfy ssc rel f is not 

in b
• Note: “secure” means z0 satisfies ssc rel f
• First says every (s, o, p) added satisfies ssc rel f; 

second says any (s, o, p) in b′ that does not satisfy 
ssc rel f is deleted
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*-Property
• b(s: p1, …, pn) set of all objects that s has p1, …, pn access 

to
• State (b, m, f, h) satisfies the *-property iff for each s ∈ S 

the following hold:
–  b(s: a) ≠ ∅ ⇒ [∀o ∈b(s: a) [ fo(o) dom fc(s) ] ]
–  b(s: w) ≠ ∅ ⇒ [∀o ∈b(s: w) [ fo(o) = fc(s) ] ]
–  b(s: r) ≠ ∅ ⇒ [∀o ∈b(s: r) [ fc(s) dom fo(o) ] ]

• Idea: for writing, object dominates subject; for reading, 
subject dominates object
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*-Property

• If all states satisfy simple security 
condition, system satisfies simple security 
condition

• If a subset S′ of subjects satisfy *-property, 
then *-property satisfied relative to S′ ⊆ S 
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Necessary and Sufficient

∀ Σ(R, D, W, z0) satisfies the *-property relative to S′ ⊆ S for 
any secure state z0 iff every action (r, d, (b, m, f, h), (b′, m′, 
f′, h′)) satisfies the following for every s ∈ S′
– Every (s, o, p) ∈ b – b´ satisfies the *-property relative to S′
– Every (s, o, p) ∈ b´ that does not satisfy the *-property relative to  

S′ is not in b
• Note: “secure” means z0 satisfies *-property relative to S′
• First says every (s, o, p) added satisfies the *-property 

relative to S′; second says any (s, o, p) in b′ that does not 
satisfy the *-property relative to S′ is deleted
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Discretionary Security Property
• State (b, m, f, h) satisfies the discretionary 

security property iff, for each (s, o, p) ∈ b, then p 
∈ m[s, o]

• Idea: if s can read o, then it must have rights to 
do so in the access control matrix m

• This is the discretionary access control part of 
the model

– The other two properties are the mandatory access 
control parts of the model
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Necessary and Sufficient

∀ Σ(R, D, W, z0) satisfies the ds-property for any 
secure state z0 iff every action (r, d, (b, m, f, h), (b′, 
m′, f′, h′)) satisfies:
– Every (s, o, p) ∈ b – b′ satisfies the ds-property
– Every (s, o, p) ∈ b′ that does not satisfy the ds-property 

is not in b
• Note: “secure” means z0 satisfies ds-property
• First says every (s, o, p) added satisfies the ds-

property; second says any (s, o, p) in b′ that does 
not satisfy the *-property is deleted
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Secure

• A system is secure iff it satisfies:
– Simple security condition
– *-property
– Discretionary security property

• A state meeting these three properties is 
also said to be secure
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Basic Security Theorem

∀Σ(R, D, W, z0) is a secure system if z0 is a 
secure state and W satisfies the conditions 
for the preceding three theorems
– The theorems are on the slides titled 

“Necessary and Sufficient”
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Example Instantiation: Multics
• 11 rules affect rights:

– set to request, release access
– set to give, remove access to different subject
– set to create, reclassify objects
– set to remove objects
– set to change subject security level

• Set of “trusted” subjects ST ⊆ S
– *-property not enforced; subjects trusted not to violate

∀ ∆(ρ) domain of a rule ρ
– determines if components of request are valid

Bell, LaPadula 75
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get-read Rule

• Request r = (get, s, o, r)
– s gets (requests) the right to read o

• Rule is ρ1(r, v):
if (r ≠ ∆(ρ1)) then ρ1(r, v) = (i, v);
else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]

and r ∈ m[s, o])
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));

else ρ1(r, v) = (n, v);
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Security of Rule

• The get-read rule preserves the simple 
security condition, the *-property relative to 
S - ST, and the ds-property
– Proof

• Let v satisfy all conditions.   Let ρ1(r, v) = (d, v′). If 
v′ = v, result is trivial. Suppose v′  = (b′ ∪ { (s2, o, 
r)}, m, f, h) where b′ = b ∪ { (s2, o, r) }.
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Proof

• Consider the simple security condition.
– From the choice of v′, either b′ – b = ∅ or { (s2, o, r) }

– If b′ – b = ∅, then { (s2, o, r) } ∈ b, so v = v′, proving 
that v′ satisfies the simple security condition.

– If b′ – b = { (s2, o, r) }, because the get-read rule 
requires that fc(s) dom fo(o), an earlier result says that v´ 
satisfies the simple security condition.
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Proof

• Consider the *-property relative to S - ST.
– Either s2 ∈ ST or fc(s) dom fo(o) from the definition of 

get-read 
– If s2 ∈ ST, then there is nothing to prove.

– If fc(s) dom fo(o), then condition 3 of the *-property is 
trivially satisfied.
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Proof

• Consider the discretionary security property.
– Conditions in the get-read rule require r ∈ m[s, o] and 

either b′ – b = ∅ or { (s2, o, r) }

– If b′ – b = ∅, then { (s2, o, r) } ∈ b, so v = v′, proving 
that v´ satisfies the simple security condition.

– If b′ – b = { (s2, o, r) }, then (s2, o, r) is in m because 
that is a condition in the definition of ρ1.
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Principle of Tranquility
• Raising object’s security level

– Information once available to some subjects is no 
longer available

– Usually assume information has already been accessed, 
so this does nothing

• Lowering object’s security level
– The declassification problem
– Essentially, a “write down” violating *-property
– Solution: define set of trusted subjects that sanitize or 

remove sensitive information before security level 
lowered
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Types of Tranquility

• Strong Tranquility
– The clearances of subjects, and the 

classifications of objects, do not change during 
the lifetime of the system

• Weak Tranquility
– The clearances of subjects, and the 

classifications of objects change in accordance 
with a specified policy.
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Example

• DG/UX System
– Only a trusted user (security administrator) can lower 

object’s security level
– In general, process MAC labels cannot change

• If a user wants a new MAC label, needs to initiate new process
• Cumbersome, so user can be designated as able to change 

process MAC label within a specified range

• Other systems allow multiple labeled windows to 
address users operating a multiple levels
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Controversy

• McLean:
– “value of the BST is much overrated since there 

is a great deal more to security than it captures. 
Further, what is captured by the BST is so 
trivial that it is hard to imagine a realistic 
security model for which it does not hold.”

– Basis: given assumptions known to be non-
secure, BST can prove a non-secure system to 
be secure

McLean 85
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†-Property
• State (b, m, f, h) satisfies the †-property iff for each s ∈ S 

the following hold:
–  b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [ fc(s) dom fo(o) ] ]
–  b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [ fo(o) = fc(s) ] ]
–  b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [ fc(s) dom fo(o) ] ]

• Idea: for writing, subject dominates object; for reading, 
subject also dominates object

• Differs from *-property in that the mandatory condition for 
writing is reversed
– For *-property, it’s object dominates subject
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Analogues

The following two theorems can be proved
∀ Σ(R, D, W, z0) satisfies the †-property relative to S′ ⊆ S for 

any secure state z0 iff for every action (r, d, (b, m, f, h), (b′, 
m′, f′, h′)), W satisfies the following for every s ∈ S´
– Every (s, o, p) ∈ b – b′ satisfies the †-property relative to S′
– Every (s, o, p) ∈ b′ that does not satisfy the †-property relative to  

S′ is not in b

∀ Σ(R, D, W, z0) is a secure system if z0 is a secure state and 
W satisfies the conditions for the simple security condition, 
the †-property, and the ds-property.
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Problem

• This system is clearly non-secure!
– Information flows from higher to lower because 

of the †-property
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System Z

• Only one transition rule
– Get-read(s,o), if s dom o allow read and set all objects 

to system low
• This system meets BLP requirements for security 

given weak tranquility
– Given secure initial state, each subsequent state is 

secure
• Points out the need to evaluate the transition rules
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Discussion
• Role of Basic Security Theorem is to demonstrate 

that rules preserve security
• Key question: what is security?

– Bell-LaPadula defines it in terms of 3 properties 
(simple security condition, *-property, discretionary 
security property)

– Theorems are assertions about these properties
– Rules describe changes to a particular system 

instantiating the model
– Showing system is secure requires proving rules 

preserve these 3 properties



Slide #5-73

Key Points

• Confidentiality models restrict flow of 
information

• Bell-LaPadula models multilevel security
– Cornerstone of much work in computer security

• Controversy over meaning of security
– Different definitions produce different results
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