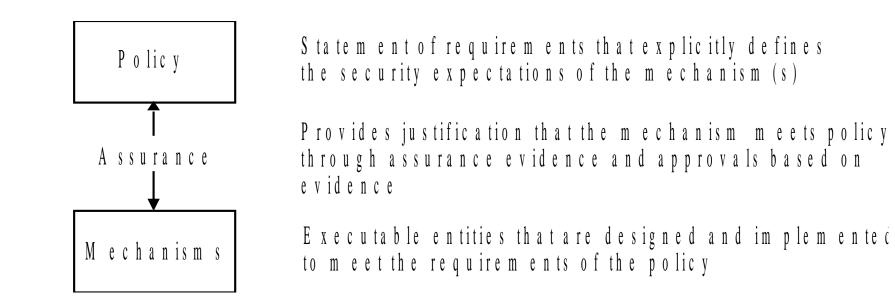
Introduction to Assurance

CS461/ECE422 Fall 2010

Based on slides provided by Matt Bishop for use with **Compute**Slide #18-1 Security: Art and Science

Reading Material

- Chapter 18 Computer Security: Art and Science
- Alternatively: Microsoft Secure Development Lifecycle http://microsoft.com/sdl


Overview

- Trust
- Problems from lack of assurance
- Types of assurance
- Life cycle and assurance
- Waterfall life cycle model
- Other life cycle models

Trust

- *Trustworthy* entity has sufficient credible evidence leading one to believe that the system will meet a set of requirements
- *Trust* is a measure of trustworthiness relying on the evidence
- *Assurance* is confidence that an entity meets its security requirements based on evidence provided by applying assurance techniques

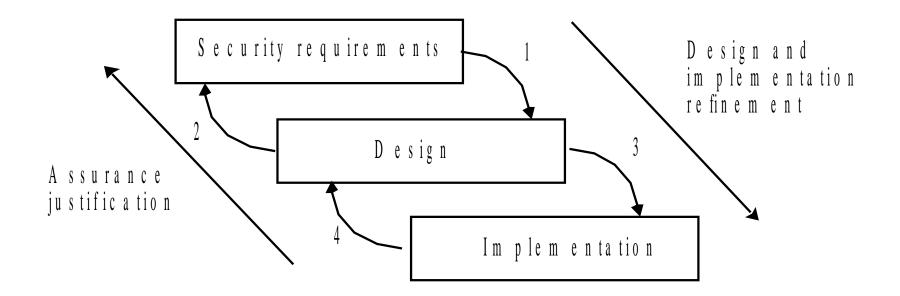
Relationships

Problem Sources

- 1. Requirements definitions, omissions, and mistakes
- 2. System design flaws
- 3. Hardware implementation flaws, such as wiring and chip flaws
- 4. Software implementation errors, program bugs, and compiler bugs
- 5. System use and operation errors and inadvertent mistakes
- 6. Willful system misuse
- 7. Hardware, communication, or other equipment malfunction
- 8. Environmental problems, natural causes, and acts of God
- 9. Evolution, maintenance, faulty upgrades, and decommissions

Examples

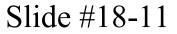
- Challenger explosion
 - Sensors removed from booster rockets to meet accelerated launch schedule
- Deaths from faulty radiation therapy system
 - Hardware safety interlock removed
 - Flaws in software design
- Bell V22 Osprey crashes
 - Failure to correct for malfunctioning components; two faulty ones could outvote a third
- Intel 486 chip
 - Bug in trigonometric functions


Role of Requirements

- *Requirements* are statements of goals that must be met
 - Vary from high-level, generic issues to lowlevel, concrete issues
- Security objectives are high-level security issues
- Security requirements are specific, concrete issues
- Example: ensure confidentiality of particular data Slide #18-8

Types of Assurance

- *Policy assurance* is evidence establishing security requirements in policy is complete, consistent, technically sound
- *Design assurance* is evidence establishing design sufficient to meet requirements of security policy
- *Implementation assurance* is evidence establishing implementation consistent with security requirements of security policy


Life Cycle

Types of Assurance

 Operational assurance is evidence establishing system sustains the security policy requirements during installation, configuration, and day-to-day operation

 Also called *administrative assurance*

Life Cycle

- Conception
- Manufacture
- Deployment
- Fielded Product Life

Conception

- Idea
 - Decisions to pursue it
- Proof of concept
 - See if idea has merit
- High-level requirements analysis
 - What does "secure" mean for this concept?
 - Is it possible for this concept to meet this meaning of security?
 - Is the organization willing to support the additional resources required to make this concept meet this meaning of security?

Manufacture

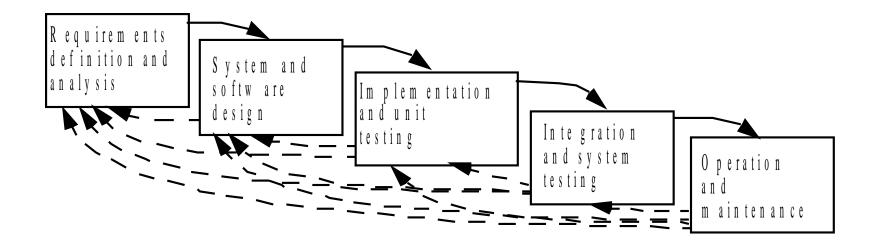
- Develop detailed plans for each group involved
 - May depend on use; internal product requires no sales
- Implement the plans to create entity
 - Includes decisions whether to proceed, for example due to market needs

Deployment

- Delivery
 - Assure that correct masters are delivered to production and protected
 - Distribute to customers, sales organizations
- Installation and configuration
 - Ensure product works appropriately for specific environment into which it is installed
 - Service people know security procedures

Fielded Product Life

- Routine maintenance, patching
 - Responsibility of engineering in small organizations
 - Responsibility may be in different group than one that manufactures product
- Customer service, support organizations
- Retirement or decommission of product


MS Security Development Lifecycle (SDL)

- •Security Training
- •Requirements
- •Design
- •Implementation
- •Verification
- •Release
- •Response

Waterfall Life Cycle Model

- Requirements definition and analysis
 - Functional and non-functional
 - General (for customer), specifications
- System and software design
- Implementation and unit testing
- Integration and system testing
- Operation and maintenance

Relationship of Stages

- Exploratory programming
 - Develop working system quickly
 - Used when detailed requirements specification cannot be formulated in advance, and adequacy is goal
 - No requirements or design specification, so low assurance
- Prototyping
 - Objective is to establish system requirements
 - Future iterations (after first) allow assurance techniques

- Formal transformation
 - Create formal specification
 - Translate it into program using correctness-preserving transformations
 - Very conducive to assurance methods
- System assembly from reusable components
 - Depends on whether components are trusted
 - Must assure connections, composition as well
 - Very complex, difficult to assure

- Spiral or Iterative Model
 - Many of the same components as waterfall
 - Need to revisit levels of waterfall is explicit
 - Iteration can be harder to track
 - Sneaking in a new feature as part of an iteration
 - Some commercial tools to help track
 - Rational Unified Process (RUP)

- Extreme programming/Agile
 - Rapid prototyping and "best practices"
 - Project driven by business decisions
 - Requirements open until project complete
 - Programmers work in teams
 - Components tested, integrated several times a day
 - Objective is to get system into production as quickly as possible, then enhance it
 - Evidence adduced *after* development needed for assurance
 - MS SDL explicitly addresses secure development in agile framework
 Slide #18-23

Key Points

- Assurance critical for determining trustworthiness of systems
- Different levels of assurance, from informal evidence to rigorous mathematical evidence
- Assurance needed at all stages of system life cycle