Design Principles

CS461/ECE422 Computer Security I Fall 2010

Based on slides provided by Matt Bishop for use with **Compute**Slide #13-1 Security: Art and Science

Reading Material

• Chapter 13 Computer Security: Art and Science

Overview

- Simplicity
 - Less to go wrong
 - Fewer possible inconsistencies
 - Easy to understand
- Restriction
 - Minimize access
 - Inhibit communication

Slide #13-3

Saltzer and Schroeder 75

Summary of Principles

- Economy of mechanism
- Fail-safe defaults
- Complete mediation
- Open design
- Separation of Privilege
- Least Privilege
- Least Common Mechanisms
- Psychological Acceptability

Economy of Mechanism

- *Keep the design as simple and small as possible*
- Simpler means less can go wrong
 - And when errors occur, they are easier to understand and fix
- Interfaces and interactions

Fail-Safe Defaults

- Base access decisions on permission rather than exclusion
- Burden of proof is on the principal seeking permission
- If the protection system fails, then legitimate access is denied but illegitimate access is also denied

Complete Mediation

- Every access to every object must be checked for authority
- Usually done once, on first action
 UNIX: access checked on open, not checked thereafter
- If permissions change after, may get unauthorized access
- Proposals to gain performance by remembering the result of an authority check should be examined skeptically

Open Design

- The design should not be secret
- Do not depend on secrecy of design or implementation
 - Popularly misunderstood to mean that source code should be public
 - "Security through obscurity"
 - Does not apply to information such as passwords or cryptographic keys

Separation of Privilege

- Where feasible, a protection mechanism that requires two keys to unlock it is more robust and flexible than one that allows access to the presenter of only a single key.
- Require multiple conditions to grant privilege
 - Separation of duty
 - Defense in depth

Least Privilege

- Every program and every user of the system should operate using the least set of privileges necessary to complete the job
- A subject should be given only those privileges necessary to complete its task
 - Function, not identity, controls
 - Rights added as needed, discarded after use
 - Minimal protection domain

Least Common Mechanism

- *Minimize the amount of mechanism common to more than one user and depended on by all users*
- Mechanisms should not be shared
 - Information can flow along shared channels
 - Covert channels
- Isolation
 - Virtual machines
 - Sandboxes

Psychological Acceptability

- It is essential that the human interface be designed for ease of use so that users routinely and automatically accept the protection mechanisms correctly
- Security mechanisms should not add to difficulty of accessing resource
 - Hide complexity introduced by security mechanisms
 - Ease of installation, configuration, use
 - Human factors critical here

Examine Scenarios

• Paper overhead

Key Points

- Principles of secure design underlie all security-related mechanisms
- Require:
 - Good understanding of goal of mechanism and environment in which it is to be used
 - Careful analysis and design
 - Careful implementation