
1

 Symmetric Cryptography

CS461/ECE422
Fall 2009

2

Outline

• Overview of Cryptosystem design
• Commercial Symmetric systems

– DES
– AES

• Modes of block and stream ciphers

3

Reading

• Chapter 9 from Computer Science: Art and
Science
– Sections 3 and 4

• AES Standard issued as FIPS PUB 197
– http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

• Handbook of Applied Cryptography,
Menezes, van Oorschot, Vanstone
– Chapter 7
– http://www.cacr.math.uwaterloo.ca/hac/

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.cacr.math.uwaterloo.ca/hac/

4

Stream, Block Ciphers

• E encipherment function
– Ek(b) encipherment of message b with key k
– In what follows, m = b1b2 …, each bi of fixed length

• Block cipher
– Ek(m) = Ek(b1)Ek(b2) …

• Stream cipher
– k = k1k2 …
– Ek(m) = Ek1(b1)Ek2(b2) …
– If k1k2 … repeats itself, cipher is periodic and the length

of its period is one cycle of k1k2 …

5

Examples

• Vigenère cipher
– |bi| = 1 character, k = k1k2 … where |ki| = 1 character
– Each bi enciphered using ki mod length(k)

– Stream cipher
• DES

– |bi| = 64 bits, |k| = 56 bits
– Each bi enciphered separately using k
– Block cipher

6

Confusion and Diffusion

• Confusion
– Interceptor should not be able to predict how

ciphertext will change by changing one character
• Diffusion

– Cipher should spread information from plaintext
over cipher text

– See avalanche effect

7

Avalanche Effect

• Key desirable property of an encryption algorithm
• Where a change of one input or key bit results in

changing approx half of the output bits
• If the change were small, this might provide a way

to reduce the size of the key space to be searched
• DES exhibits strong avalanche

Slide #9-8

Overview of the DES
• A block cipher:

– encrypts blocks of 64 bits using a 56 bit key
– outputs 64 bits of ciphertext

• A product cipher
– basic unit is the bit
– performs both substitution (S-box) and transposition

(permutation) (P-box) on the bits
• Cipher consists of 16 rounds (iterations) each with

a round key generated from the user-supplied key

9

Feistel Network

• Structured to enable use of same S-box and
P-box for encryption and decryption
– Change only key schedule

• Major feature is key division and swapping
– L(i) = R(i-1)
– R(i) = L(i-1) xor f(K(i), R(i-1))

10

Feistel Structure Decryption

11

The Big Picture

Slide #9-12

Generation of Round Keys
k e y

P C - 1

C 0 D 0

L S H L S H

D 1

P C - 2 K 1

K 1 6
L S H L S H

C 1

P C - 2

• Round keys are 48 bits
each

Slide #9-13

Encryption
input

IP

L0 R 0

⊕ f K1

L1 = R0 R1 = L0 ⊕ f(R0, K1)

R16 = L15 ­ f (R15, K16) L16 = R15

IPŠ1

output

Slide #9-14

The f Function
RiŠ1 (32 bits)

E

RiŠ1 (48 bits)

Ki (48 bits)

⊕

S1 S2 S3 S4 S5 S6 S7 S8

6 bits into each

P

32 bits

4 bits out of each

15

Substitution boxes
• Key non-linear element to DES security
• have eight S-boxes which map 6 to 4 bits

– outer bits 1 & 6 (rowbits) select one rows
– inner bits 2-5 (colbits) select column
– result is 8 lots of 4 bits, or 32 bits

• row selection depends on both data & key
– feature known as autoclaving (autokeying)

• example:
– S(18 09 12 3d 11 17 38 39) = 5fd25e03

16

DES Decryption
• decrypt must unwind steps of data computation
• with Feistel design, do encryption steps again

using subkeys in reverse order (SK16 … SK1)
• note that IP undoes final FP step of encryption

– 1st round with SK16 undoes 16th encrypt round
– ….
– 16th round with SK1 undoes 1st encrypt round

• then final FP undoes initial encryption IP thus
recovering original data value

17

Controversy

• Considered too weak
– Diffie, Hellman said in a few years technology would

allow DES to be broken in days
• Design using 1999 technology published

– Design decisions not public
• NSA controlled process
• Some of the design decisions underlying the S-Boxes are

unknown
• S-boxes may have backdoors
• Key size reduced from 112 bits in original Lucifer design to 56

bits

18

Undesirable Properties
• 4 weak keys

– They are their own inverses
– i.e. DESk(m) = c ⇒ DESk′(c) = m
– All 0’s. All 1’s. First half 1’s second half 0’s. Visa versa.

• 12 semi-weak keys
– Each has another semi-weak key as inverse
– i.e. DESk1(m) = c ⇒ DESk2′(c) = m

• Possibly weak keys
– Result in same subkeys being used in multiple rounds

• Complementation property
– DESk(m) = c ⇒ DESk′(m′) = c′

19

Brute Force Attack

• What do you need?
• How many steps should it take?
• How can you do better?

20

Differential Cryptoanalysis

• Was not reported in open literature until
1990
– Tracks probabilities of differences inputs

matching differences in outputs
• Chosen ciphertext attack

21

Differential Cryptoanalysis

• Build table of probabilities of inputs and
outputs per round
– ∆mi+1 = mi+1 xor m’i+1

– ∆mi+1 = [mi-1 xor f(mi,Ki)] xor [m’i-1 xor f(m’i,
Ki)]

– ∆mi+1 = ∆mi-1xor [f(mi,Ki) xor f(m’i, Ki)]

• Compose probabilities per round

22

Differential Cryptoanalysis

• Revealed several properties
– Small changes in S-boxes reduces the number

of pairs needed
– The method was known to designer team as

early as 1974
• Not so useful to break DES

– But very useful to analyze the security of
Feistel Network systems

23

Differential Cryptoanalysis

• Lucifer – IBM precursor to DES
– Broken in 30 pairs

• FEAL-N
– DES with different numbers of iterations
– FEAL-4 broken in 20 pairs
– FEAL-8 broken in 10,000 pairs

• DES with 15 rounds broken in 2^52 tests
• DES with 16 rounds broken in 2^58 tests

24

Current Status of DES
• A design for computer system and an associated

software that could break any DES-enciphered
message in a few days was published in 1998

• Several challenges to break DES messages solved
using distributed computing

• National Institute of Standards and Technology
(NIST) selected Rijndael as Advanced Encryption
Standard (AES), successor to DES
– Designed to withstand attacks that were successful on

DES
– It can use keys of varying length (128, 196, or 256)

25

AES Background

• Clear a replacement for DES was needed
– Can use Triple-DES –but slow with small blocks

• US NIST issued call for ciphers in 1997
– 15 candidates accepted in Jun 98
– 5 were short-listed in Aug-99

• Rijndael was selected as AES in Oct-2000
– issued as FIPS PUB 197 standard in Nov-2001
– http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

26

AES Requirements

• Private key symmetric block cipher
– 128-bit data, 128/192/256-bit keys

• Stronger & faster than Triple-DES
• Active life of 20-30 years (+ archival use)
• Provide full specification & design details
• Both C & Java implementations
• NIST have released all submissions &

unclassified analyses

27

AES Evaluation Criteria
• Initial criteria:

– security –effort to practically cryptanalyse
– cost –computational
– algorithm & implementation characteristics

• Final criteria
– general security
– software & hardware implementation ease
– implementation attacks
– flexibility (in en/decrypt, keying, other factors)

28

AES Shortlist
• Shortlist August-99:

– MARS (IBM) -complex, fast, high security margin
– RC6 (USA) -v. simple, v. fast, low security margin
– Rijndael(Belgium) -clean, fast, good security margin
– Serpent (Euro) -slow, clean, v. high security margin
– Twofish(USA) -complex, v. fast, high security margin

• Subject to further analysis & comment
• Saw contrast between algorithms with

– few complex rounds verses many simple rounds
– which refined existing ciphers verses new proposals

29

The AES Cipher - Rijndael
• Designed by Rijmen-Daemenin Belgium

– Has 128/192/256 bit keys, 128 bit data
• An iterative rather than feistel cipher

– treats data in 4 groups of 4 bytes
– 4x4 matrix in column major order
– operates an entire block in every round

• Designed to be:
– resistant against known attacks
– speed and code compactness on many CPUs
– Simple design

30

AES Block Matrix

In0

In1

In2

In3

In4

In5

In6

In7

In8

In9

In10

In11

In12

In13

In14

In15

31

Algorithm Overview
• Processes data as 4 groups of 4 bytes (state)
• Has 9/11/13 rounds in which state

undergoes:
– Byte substitution (1 S-box used on every byte)
– Shift rows (permute bytes between

groups/columns)
– Mix columns (subs using matrix multiply of

groups)
– Add round key (XOR state with key material)

• All operations can be combined into XOR
and table lookups -hence very fast &
efficient

32

Rijndael

33

Byte Substitution
• A simple substitution of each byte
• Uses one table of 16x16 bytes containing a

permutation of all 256 8-bit values
• Each byte of state is replaced by byte in row

(left 4-bits) & column (right 4-bits)
• S-box is constructed using a defined transformation

of the values in GF(28)
• Designed to be resistant to all known attacks

34

Shift Rows
• A circular byte shift in each row

– 1st row is unchanged
– 2nd row does 1 byte circular shift to left
– 3rd row does 2 byte circular shift to left
– 4th row does 3 byte circular shift to left

• Decrypt does shifts to right
• Since state is stored by columns, this step

permutes bytes between the columns

35

Mix Columns

• Each column is processed separately
• Each byte is replaced by a value dependent

on all 4 bytes in the column
• Effectively a matrix multiplication in GF(28)

using prime poly m(x) =x8+x4+x3+x+1

36

Add Round Key
• XOR state with 128-bits of the round key
• Again processed by column (though

effectively a series of byte operations)
• Inverse for decryption is identical since XOR

is own inverse, just with correct round key
• Designed to be as simple as possible

37

AES Round

38

AES Key Expansion
• Takes 128-bit (16-byte) key and expands

into array of 44/52/60 32-bit words
• Start by copying key into first 4 words
• Then loop creating words that depend on

values in previous & 4 places back
– in 3 of 4 cases just XOR these together
– every 4th has S-box + rotate + XOR constant of

previous before XOR together
• Designed to resist known attacks

39

AES Decryption
• AES decryption is not identical to encryption

since steps done in reverse
• But can define an equivalent inverse cipher

with steps as for encryption
– but using inverses of each step
– with a different key schedule

• Works since result is unchanged when
– swap byte substitution & shift rows
– swap mix columns & add (tweaked) round key

40

Implementation Issues
• Can be efficiently implemented on 8-bit CPU

– Byte substitution works on bytes using a table of
256 entries

– Shift rows is simple byte shifting
– Add round key works on byte XORs
– Mix columns requires matrix multiply in GF(28)

on byte values, can be simplified to use a table
lookup

41

Block Ciphers

• Encipher, decipher multiple bits at once
• Each block enciphered independently

– Electronic Code Book Mode (ECB)

42

ECB Problem
• Problem: identical plaintext blocks produce

identical ciphertext blocks
– Example: two database records

• MEMBER: HOLLY INCOME $100,000
• MEMBER: HEIDI INCOME $100,000

– Encipherment:
• ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN
• ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN

43

Solutions

• Insert information about block’s position
into the plaintext block, then encipher

• Cipher block chaining (CBC):
– Exclusive-or current plaintext block with

previous ciphertext block:
• c0 = Ek(m0 ⊕ I)
• ci = Ek(mi ⊕ ci–1) for i > 0

where I is the initialization vector

44

CBC Mode Encryption

⊕

init. vector m1

DES

c1

⊕

m2

DES

c2

sent sent

…

…

…

45

CBC Mode Decryption

⊕

init. vector c1

DES

m1

…

…

…

⊕

c2

DES

m2

46

Self-Healing Property
• If one block of ciphertext is altered, the error propagates

for at most two blocks
• Initial message

– 3231343336353837 3231343336353837 3231343336353837
3231343336353837

• Received as (underlined 4c should be 4b)
– ef7c4cb2b4ce6f3b f6266e3a97af0e2c 746ab9a6308f4256
33e60b451b09603d

• Which decrypts to
– efca61e19f4836f1 3231333336353837 3231343336353837
3231343336353837

– Incorrect bytes underlined
– Plaintext “heals” after 2 blocks

47

Multiple Encryptions
• Double encryption not generally used

– Meet-in-the-middle attack
– C = Ek2(Ek1(P))
– Modifies brute force to require only 2n+1 steps instead of 22n

• Encrypt-Decrypt-Encrypt Mode (2 or 3 keys: k, k′)
– c = DESk(DESk′

–1(DESk’’(m)))
– Also called Triple DES or 3DES when used with 3 keys
– 168 bits of key, but effective key length of 112 due to meet-in-the

middle
– Not yet practical to break but AES much faster

• Encrypt-Encrypt-Encrypt Mode (3 keys: k, k′, k′′)
– c = DESk(DESk′ (DESk′′(m)))

48

Stream Ciphers

• Often (try to) implement one-time pad by
xor’ing each bit of key with one bit of
message
– Example:

m = 00101
k = 10010
c = 10111

• But how to generate a good key?

49

Synchronous Stream Ciphers

• n-stage Linear Feedback Shift Register:
consists of
– n bit register r = r0…rn–1

– n bit tap sequence t = t0…tn–1

– Use:
• Use rn–1 as key bit
• Compute x = r0t0 ⊕ … ⊕ rn–1tn–1

• Shift r one bit to right, dropping rn–1, x becomes r0

50

Operation

r0 rn–1
… bi

…

…

⊕

ci

r0´ rn–1´… ri´ = ri–1,
0 < i ≤ n

r0t0 + … + rn–1tn–1
Feedback
Function

51

Example

• 4-stage LFSR; t = 1001
r ki new bit computation new r
0010 0 01⊕00⊕10⊕01 = 0 0001
0001 1 01⊕00⊕00⊕11 = 1 1000
1000 0 11⊕00⊕00⊕01 = 1 1100
1100 0 11⊕10⊕00⊕01 = 1 1110
1110 0 11⊕10⊕10⊕01 = 1 1111
1111 1 11⊕10⊕10⊕11 = 0 0111
– 00 11⊕10⊕10⊕11 = 1 1011
– Key sequence has period of 15 (010001111010110)

52

LFSR Period

• For n bit register
– Maximum possible period is 2n-1
– -1 because 0’s will only yield 0’s

• Not all tap sequences will yield this period
– Large theory on computing maximal period

feedback functions

53

NLFSR

• n-stage Non-Linear Feedback Shift
Register: consists of
– n bit register r = r0…rn–1

– Use:
• Use rn–1 as key bit
• Compute x = f(r0, …, rn–1); f is any function
• Shift r one bit to right, dropping rn–1, x becomes r0

Note same operation as LFSR but more
general bit replacement function

54

Example

• 4-stage NLFSR; f(r0, r1, r2, r3) = (r0 & r2) | r3

r ki new bit computation new r
1100 0 (1 & 0) | 0 = 0 0110
0110 0 (0 & 1) | 0 = 0 0011
0011 1 (0 & 1) | 1 = 1 1001
1001 1 (1 & 0) | 1 = 1 1100
1100 0 (1 & 0) | 0 = 0 0110
0110 0 (0 & 1) | 0 = 0 0011
0011 1 (0 & 1) | 1 = 1 1001
– Key sequence has period of 4 (0011)

55

Eliminating Linearity

• NLFSRs not common
– No body of theory about how to design them to have

long period
• Alternate approach: output feedback mode

– For E encipherment function, k key, r register:
• Compute r′= Ek(r); key bit is rightmost bit of r′
• Set r to r′ and iterate, repeatedly enciphering register and

extracting key bits, until message enciphered
– Variant: use a counter that is incremented for each

encipherment rather than a register
• Take rightmost bit of Ek(i), where i is number of encipherment

56

OFB Mode

Ek Ek

Pi-1 Pi Pi+1

Ci-1 Ci Ci+1

Si-1

57

Counter Mode

Ek Ek

Pi-1 Pi Pi+1

Ci-1 Ci Ci+1

Ek

Ctri-1
Ctri

Ctri+1

58

Issues with OFB/Counter

• Additional standard modes for DES/AES
• Losing Synchronicity is fatal

– All later decryptions will be garbled
• OFB needs an initialization vector
• Counter mode lets you generate a bit in the

middle of the stream
• RC4 is a well-known stream cipher that

uses OFB. Used in WEP

59

Self-Synchronous Stream Cipher

• Take key from message itself (autokey)
• Example: Vigenère, key drawn from plaintext

– key XTHEBOYHASTHEBA
– plaintext THEBOYHASTHEBAG
– ciphertext QALFPNFHSLALFCT

• Problem:
– Statistical regularities in plaintext show in key
– Once you get any part of the message, you can decipher

more

60

Another Example

• Take key from ciphertext (autokey)
• Example: Vigenère, key drawn from ciphertext

– key XQXBCQOVVNGNRTT
– plaintext THEBOYHASTHEBAG
– ciphertext QXBCQOVVNGNRTTM

• Problem:
– Attacker gets key along with ciphertext, so deciphering

is trivial

61

Variant
• Cipher feedback mode: 1 bit of ciphertext fed into n bit

register
– Self-healing property: if ciphertext bit received incorrectly, it and

next n bits decipher incorrectly; but after that, the ciphertext bits
decipher correctly

– Need to know k, E to decipher ciphertext

k
Ek(r)r

… E …

⊕

mi

ci

62

Key Points
• Historical Ciphers

– Give examples of linguistic attacks
– Substitution and transposition ciphers

• Symmetric key ciphers
– AES and DES
– Today's workhorse algorithms
– Crypto analysis attacks on algorithms
– Product ciphers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

