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Outline

• Overview of Cryptosystem design
• Commercial Symmetric systems

– DES
– AES

• Modes of block and stream ciphers
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Reading

• Chapter 9 from Computer Science: Art and 
Science
– Sections 3 and 4

• AES Standard issued as FIPS PUB 197
– http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

• Handbook of Applied Cryptography, 
Menezes, van Oorschot, Vanstone
– Chapter 7
– http://www.cacr.math.uwaterloo.ca/hac/

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.cacr.math.uwaterloo.ca/hac/
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Stream, Block Ciphers

• E encipherment function
– Ek(b) encipherment of message b with key k
– In what follows, m = b1b2 …, each bi of fixed length

• Block  cipher
– Ek(m) = Ek(b1)Ek(b2) …

• Stream cipher
– k = k1k2 …
– Ek(m) = Ek1(b1)Ek2(b2) …
– If k1k2 … repeats itself, cipher is periodic and the length 

of its period is one cycle of k1k2 …



5

Examples

• Vigenère cipher
– |bi| = 1 character, k = k1k2 … where |ki| = 1 character
– Each bi enciphered using ki mod length(k)

– Stream cipher
• DES

– |bi| = 64 bits, |k| = 56 bits
– Each bi enciphered separately using k
– Block cipher
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Confusion and Diffusion

• Confusion
– Interceptor should not be able to predict how 

ciphertext will change by changing one character
• Diffusion

– Cipher should spread information from plaintext 
over cipher text

– See avalanche effect
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Avalanche Effect

• Key desirable property of an encryption algorithm
• Where a change of one input or key bit results in 

changing approx half of the output bits
• If the change were small, this might provide a way 

to reduce the size of the key space to be searched
• DES exhibits strong avalanche
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Overview of the DES
• A block cipher:

– encrypts blocks of 64 bits using a 56 bit key
– outputs 64 bits of ciphertext

• A product cipher
– basic unit is the bit
– performs both substitution (S-box) and transposition 

(permutation) (P-box) on the bits
• Cipher consists of 16 rounds (iterations) each with 

a round key generated from the user-supplied key
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Feistel Network

• Structured to enable use of same S-box and 
P-box for encryption and decryption
– Change only key schedule

• Major feature is key division and swapping
– L(i) = R(i-1) 
– R(i) = L(i-1) xor f(K(i), R(i-1))
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Feistel Structure Decryption
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The Big Picture
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Generation of Round Keys
k e y

P C - 1

C 0 D 0

L S H L S H

D 1

P C - 2 K 1

K 1 6
L S H L S H

C 1

P C - 2

• Round keys are 48 bits 
each
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Encryption
input

IP

L0 R 0

⊕ f K1

L1 =  R0 R1 =  L0 ⊕  f(R0, K1)

R16 =  L15 ­  f (R15, K16) L16 =  R15

IPŠ1

output
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The f Function
RiŠ1 (32 bits)

E

RiŠ1 (48 bits)

Ki (48 bits)

⊕

S1 S2 S3 S4 S5 S6 S7 S8

6 bits into each

P

32 bits

4 bits out of each
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Substitution boxes
• Key non-linear element to DES security
• have eight S-boxes which map 6 to 4 bits 

– outer bits 1 & 6 (rowbits) select one rows 
– inner bits 2-5 (colbits) select column
– result is 8 lots of 4 bits, or 32 bits

• row selection depends on both data & key
– feature known as autoclaving (autokeying)

• example:
– S(18 09 12 3d 11 17 38 39) = 5fd25e03
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DES Decryption
• decrypt must unwind steps of data computation 
• with Feistel design, do encryption steps again 

using subkeys in reverse order (SK16 … SK1)
• note that IP undoes final FP step of encryption 

– 1st round with SK16 undoes 16th encrypt round
– ….
– 16th round with SK1 undoes 1st encrypt round 

• then final FP undoes initial encryption IP thus 
recovering original data value 
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Controversy

• Considered too weak
– Diffie, Hellman said in a few years technology would 

allow DES to be broken in days
• Design using 1999 technology published

– Design decisions not public
• NSA controlled process
• Some of the design decisions underlying the S-Boxes are 

unknown
• S-boxes may have backdoors
• Key size reduced from 112 bits in original Lucifer design to 56 

bits
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Undesirable Properties
• 4 weak keys

– They are their own inverses
– i.e. DESk(m) = c ⇒ DESk′(c) = m
– All 0’s.  All 1’s.  First half 1’s second half 0’s.  Visa versa.

• 12 semi-weak keys
– Each has another semi-weak key as inverse
– i.e. DESk1(m) = c ⇒ DESk2′(c) = m

• Possibly weak keys
– Result in same subkeys being used in multiple rounds

• Complementation property
– DESk(m) = c ⇒ DESk′(m′) = c′
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Brute Force Attack

• What do you need?
• How many steps should it take?
• How can you do better?
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Differential Cryptoanalysis

• Was not reported in open literature until 
1990
– Tracks probabilities of differences inputs 

matching differences in outputs
• Chosen ciphertext attack
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Differential Cryptoanalysis

• Build table of probabilities of inputs and 
outputs per round
– ∆mi+1 = mi+1 xor m’i+1

– ∆mi+1 = [mi-1 xor f(mi,Ki)] xor [ m’i-1 xor f(m’i, 
Ki)]

– ∆mi+1 = ∆mi-1xor [f(mi,Ki) xor f(m’i, Ki)]

• Compose probabilities per round 
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Differential Cryptoanalysis

• Revealed several properties
– Small changes in S-boxes reduces the number 

of pairs needed
– The method was known to designer team as 

early as 1974
• Not so useful to break DES

– But very useful to analyze the security of 
Feistel Network systems
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Differential Cryptoanalysis

• Lucifer – IBM precursor to DES
– Broken in 30 pairs

• FEAL-N 
– DES with different numbers of iterations
– FEAL-4 broken in 20 pairs
– FEAL-8 broken in 10,000 pairs

• DES with 15 rounds broken in 2^52 tests
• DES with 16 rounds broken in 2^58 tests
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Current Status of DES
• A design for computer system and an associated 

software that could break any DES-enciphered 
message in a few days was published in 1998

• Several challenges to break DES messages solved 
using distributed computing

• National Institute of Standards and Technology 
(NIST) selected Rijndael as Advanced Encryption 
Standard (AES), successor to DES
– Designed to withstand attacks that were successful on 

DES
– It can use keys of varying length (128, 196, or 256)
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AES Background

• Clear a replacement for DES was needed
– Can use Triple-DES –but slow with small blocks

• US NIST issued call for ciphers in 1997
– 15 candidates accepted in Jun 98 
– 5 were short-listed in Aug-99 

• Rijndael was selected as AES in Oct-2000
– issued as FIPS PUB 197 standard in Nov-2001
– http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

 

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
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AES Requirements

• Private key symmetric block cipher 
– 128-bit data, 128/192/256-bit keys 

• Stronger & faster than Triple-DES 
• Active life of 20-30 years (+ archival use) 
• Provide full specification & design details 
• Both C & Java implementations
• NIST have released all submissions & 

unclassified analyses
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AES Evaluation Criteria
• Initial criteria:

– security –effort to practically cryptanalyse
– cost –computational
– algorithm & implementation characteristics

• Final criteria
– general security
– software & hardware implementation ease
– implementation attacks
– flexibility (in en/decrypt, keying, other factors)
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AES Shortlist
• Shortlist August-99: 

– MARS (IBM) -complex, fast, high security margin 
– RC6 (USA) -v. simple, v. fast, low security margin 
– Rijndael(Belgium) -clean, fast, good security margin 
– Serpent (Euro) -slow, clean, v. high security margin 
– Twofish(USA) -complex, v. fast, high security margin 

• Subject to further analysis & comment
• Saw contrast between algorithms with 

– few complex rounds verses many simple rounds 
– which refined existing ciphers verses new proposals
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The AES Cipher - Rijndael
• Designed by Rijmen-Daemenin Belgium 

– Has 128/192/256 bit keys, 128 bit data 
• An iterative rather than feistel cipher

– treats data in 4 groups of 4 bytes
– 4x4 matrix in column major order
– operates an entire block in every round

• Designed to be:
– resistant against known attacks
– speed and code compactness on many CPUs
– Simple design
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AES Block Matrix

In0

In1

In2

In3

In4

In5

In6

In7

In8

In9

In10

In11

In12

In13

In14

In15
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Algorithm Overview
• Processes data as 4 groups of 4 bytes (state)
• Has 9/11/13 rounds in which state 

undergoes: 
– Byte substitution (1 S-box used on every byte) 
– Shift rows (permute bytes between 

groups/columns) 
– Mix columns (subs using matrix multiply of 

groups) 
– Add round key (XOR state with key material) 

• All operations can be combined into XOR 
and table lookups -hence very fast & 
efficient
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Rijndael
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Byte Substitution
• A simple substitution of each byte
• Uses one table of 16x16 bytes containing a 

permutation of all 256 8-bit values
• Each byte of state is replaced by byte in row 

(left 4-bits) & column (right 4-bits)
• S-box is constructed using a defined transformation 

of the values in GF(28)
• Designed to be resistant to all known attacks
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Shift Rows
• A circular byte shift in each row

– 1st row is unchanged
– 2nd row does 1 byte circular shift to left
– 3rd row does 2 byte circular shift to left
– 4th row does 3 byte circular shift to left

• Decrypt does shifts to right
• Since state is stored by columns, this step 

permutes bytes between the columns
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Mix Columns

• Each column is processed separately
• Each byte is replaced by a value dependent 

on all 4 bytes in the column
• Effectively a matrix multiplication in GF(28) 

using prime poly m(x) =x8+x4+x3+x+1
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Add Round Key
• XOR state with 128-bits of the round key
• Again processed by column (though 

effectively a series of byte operations)
• Inverse for decryption is identical since XOR 

is own inverse, just with correct round key
• Designed to be as simple as possible
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AES Round
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AES Key Expansion
• Takes 128-bit (16-byte) key and expands 

into array of 44/52/60 32-bit words
• Start by copying key into first 4 words
• Then loop creating words that depend on 

values in previous & 4 places back
– in 3 of 4 cases just XOR these together
– every 4th has S-box + rotate + XOR constant of 

previous before XOR together
• Designed to resist known attacks
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AES Decryption
• AES decryption is not identical to encryption 

since steps done in reverse
• But can define an equivalent inverse cipher 

with steps as for encryption
– but using inverses of each step
– with a different key schedule

• Works since result is unchanged when
– swap byte substitution & shift rows
– swap mix columns & add (tweaked) round key
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Implementation Issues
• Can be efficiently implemented on 8-bit CPU

– Byte substitution works on bytes using a table of 
256 entries

– Shift rows is simple byte shifting
– Add round key works on byte XORs
– Mix columns requires matrix multiply in GF(28) 

on byte values, can be simplified to use a table 
lookup
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Block Ciphers

• Encipher, decipher multiple bits at once
• Each block enciphered independently

– Electronic Code Book Mode (ECB)
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ECB Problem
• Problem: identical plaintext blocks produce 

identical ciphertext blocks
– Example: two database records

•  MEMBER: HOLLY INCOME $100,000
•  MEMBER: HEIDI INCOME $100,000

– Encipherment:
•  ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN
•  ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN
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Solutions

• Insert information about block’s position 
into the plaintext block, then encipher

• Cipher block chaining (CBC):
– Exclusive-or current plaintext block with 

previous ciphertext block:
• c0 = Ek(m0 ⊕ I)
• ci = Ek(mi ⊕ ci–1) for i > 0

where I is the initialization vector
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CBC Mode Encryption

⊕

init. vector m1

DES

c1

⊕

m2

DES

c2

sent sent

…

…

…
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CBC Mode Decryption

⊕

init. vector c1

DES

m1

…

…

…

⊕

c2

DES

m2
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Self-Healing Property
• If one block of ciphertext is altered, the error propagates 

for at most two blocks
• Initial message

– 3231343336353837 3231343336353837 3231343336353837 
3231343336353837 

• Received as (underlined 4c should be 4b)
– ef7c4cb2b4ce6f3b f6266e3a97af0e2c 746ab9a6308f4256 
33e60b451b09603d

• Which decrypts to
– efca61e19f4836f1 3231333336353837 3231343336353837 
3231343336353837

– Incorrect bytes underlined
– Plaintext “heals” after 2 blocks
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Multiple Encryptions
• Double encryption not generally used

– Meet-in-the-middle attack
– C = Ek2(Ek1(P))
– Modifies brute force to require only 2n+1 steps instead of 22n

• Encrypt-Decrypt-Encrypt Mode (2 or 3 keys: k, k′)
– c = DESk(DESk′

–1(DESk’’(m)))
– Also called Triple DES or 3DES when used with 3 keys
– 168 bits of key, but effective key length of 112 due to meet-in-the 

middle
– Not yet practical to break but AES much faster

• Encrypt-Encrypt-Encrypt Mode (3 keys: k, k′, k′′) 
– c = DESk(DESk′ (DESk′′(m)))
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Stream Ciphers

• Often (try to) implement one-time pad by 
xor’ing each bit of key with one bit of 
message
– Example:

m = 00101
k =  10010
c =  10111

• But how to generate a good key?
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Synchronous Stream Ciphers

• n-stage Linear Feedback Shift Register: 
consists of
– n bit register r = r0…rn–1

– n bit tap sequence t = t0…tn–1

– Use:
• Use rn–1 as key bit
• Compute x = r0t0 ⊕ … ⊕ rn–1tn–1

• Shift r one bit to right, dropping rn–1, x becomes r0
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Operation

r0 rn–1
… bi

…

…

⊕

ci

r0´ rn–1´… ri´ = ri–1,
0 < i ≤ n

r0t0 + … + rn–1tn–1
Feedback
Function
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Example

• 4-stage LFSR; t = 1001
r ki new bit computation new r
0010 0 01⊕00⊕10⊕01 = 0 0001
0001 1 01⊕00⊕00⊕11 = 1 1000
1000 0 11⊕00⊕00⊕01 = 1 1100
1100 0 11⊕10⊕00⊕01 = 1 1110
1110 0 11⊕10⊕10⊕01 = 1 1111
1111 1 11⊕10⊕10⊕11 = 0 0111
– 00 11⊕10⊕10⊕11 = 1 1011
– Key sequence has period of 15 (010001111010110)
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LFSR Period

• For n bit register
– Maximum possible period is 2n-1
– -1 because 0’s will only yield 0’s

• Not all tap sequences will yield this period
– Large theory on computing maximal period 

feedback functions
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NLFSR

• n-stage Non-Linear Feedback Shift 
Register: consists of
– n bit register r = r0…rn–1

– Use:
• Use rn–1 as key bit
• Compute x = f(r0, …, rn–1); f is any function
• Shift r one bit to right, dropping rn–1, x becomes r0

Note same operation as LFSR but more 
general bit replacement function
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Example

• 4-stage NLFSR; f(r0, r1, r2, r3) = (r0 & r2) | r3

r ki new bit computation new r
1100 0 (1 & 0) | 0 = 0 0110
0110 0 (0 & 1) | 0 = 0 0011
0011 1 (0 & 1) | 1 = 1 1001
1001 1 (1 & 0) | 1 = 1 1100
1100 0 (1 & 0) | 0 = 0 0110
0110 0 (0 & 1) | 0 = 0 0011
0011 1 (0 & 1) | 1 = 1 1001
– Key sequence has period of 4 (0011)
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Eliminating Linearity

• NLFSRs not common
– No body of theory about how to design them to have 

long period
• Alternate approach: output feedback mode

– For E encipherment function, k key, r register:
• Compute r′= Ek(r); key bit is rightmost bit of r′
• Set r to r′ and iterate, repeatedly enciphering register and 

extracting key bits, until message enciphered
– Variant: use a counter that is incremented for each 

encipherment rather than a register
• Take rightmost bit of Ek(i), where i is number of encipherment
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OFB Mode

Ek Ek

Pi-1 Pi Pi+1

Ci-1 Ci Ci+1

Si-1
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Counter Mode

Ek Ek

Pi-1 Pi Pi+1

Ci-1 Ci Ci+1

Ek

Ctri-1
Ctri

Ctri+1
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Issues with OFB/Counter

• Additional standard modes for DES/AES
• Losing Synchronicity is fatal

– All later decryptions will be garbled
• OFB needs an initialization vector
• Counter mode lets you generate a bit in the 

middle of the stream
• RC4 is a well-known stream cipher that 

uses OFB.  Used in WEP
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Self-Synchronous Stream Cipher

• Take key from message itself (autokey)
• Example: Vigenère, key drawn from plaintext

– key XTHEBOYHASTHEBA
– plaintext THEBOYHASTHEBAG
– ciphertext QALFPNFHSLALFCT

• Problem:
– Statistical regularities in plaintext show in key
– Once you get any part of the message, you can decipher 

more
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Another Example

• Take key from ciphertext (autokey)
• Example: Vigenère, key drawn from ciphertext

– key XQXBCQOVVNGNRTT
– plaintext THEBOYHASTHEBAG
– ciphertext QXBCQOVVNGNRTTM

• Problem:
– Attacker gets key along with ciphertext, so deciphering 

is trivial
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Variant
• Cipher feedback mode: 1 bit of ciphertext fed into n bit 

register
– Self-healing property: if ciphertext bit received incorrectly, it and 

next n bits decipher incorrectly; but after that, the ciphertext bits 
decipher correctly

– Need to know k, E to decipher ciphertext

k
Ek(r)r

… E …

⊕

mi

ci
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Key Points
• Historical Ciphers

– Give examples of linguistic attacks
– Substitution and transposition ciphers

• Symmetric key ciphers
– AES and DES
– Today's workhorse algorithms
– Crypto analysis attacks on algorithms
– Product ciphers
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