
Malware and Exploit Enabling
Code

Information Assurance
CS461/ECE422

Fall 2009

Reading Material

• CS Chapter 22
• Ken Thompson and Trojans

– http://cm.bell-labs.com/who/ken/trust.html
• Worm Anatomy and Model

http://portal.acm.org/citation.cfm?id=948196
• Smashing the Stack for Fun and Profit

http://insecure.org/stf/smashstack.html

http://cm.bell-labs.com/who/ken/trust.html
http://portal.acm.org/citation.cfm?id=948196

Outline
• Malware

– Trojans, Virus, Worms, etc.
• Exploitable Code Issues

– Configuration Management
– Buffer Overview
– Format String
– Input Checking
– Time-of-use to Time-of-check

• Ethical hacking

Why Do We Care?
• SANS Top 20 Internet Security

Vulnerabilities
– http://www.sans.org/top20/

• Broad issues very similar year in and year
out

http://www.sans.org/top20/

Zero Day Exploit
• An exploit that has no patch available
• Time between exploit discovery and wide

activation shrinking
• Malware developer has trade-off

– Big splash but faster discovery
– Reduced attack rate but longer undiscovered

Windows Meta File Exploit
• Exploit flaws in the Windows rendering engine enable

remote code execution
– Memory corruptions
– Visiting web site with “bad image” causes attack
– Attack sold for $4,000
– http://www.eweek.com/article2/0,1895,1918198,00.asp

• Bugtraq post in December 2005
– Probably lingering earlier
– 0 day exploit

• Microsoft’s response in early January 2006
– http://www.microsoft.com/technet/security/bulletin/ms06-001.mspx

http://www.eweek.com/article2/0,1895,1918198,00.asp
http://www.microsoft.com/technet/security/bulletin/ms06-001.mspx

Malicious Code

• Set of instructions that cause a site’s
security policy to be violated

• Often leveraging an inadvertent flaw
(design or implementation)
– To propagate/install on target
– To cause harm on target

Malware Summary

Code type Characteristics
Virus Attaches itself to program and copies to other programs
Trojan Horse Contains unexpected, additional funtionality
Logic Bomb Triggers action when condition occurs
Time Bomb Triggers action when specified time occurs
Trapdoor Allows unauthorized access to functionality
Worm Propagates copies of itself through a network
Rabbit Replicates itself without limit to exhaust resources
Netbot Trapdoor programs orchestrated through control channel (IRC)
Root Kit Hooks standard OS calls to hide data

Trojan Horses

• Seemingly useful program that contains
code that does harmful things
– Perform both overt and covert actions

• Frequently embedded in applets or games,
email attachments

• Trojan horse logins, spoof authentication
or webpage forms

Thompson's Trojan Compiler
• Detect it is compiling “login” program

– Add “bug” to accept fixed password
• Problem:

– Easily seen in code review
• Solution:

– Add second bug activated when compiling
compiler itself

– Then remove bugs from source
• http://cm.bell-labs.com/who/ken/trust.html

http://cm.bell-labs.com/who/ken/trust.html

Key Loggers and Spyware
• Gather information from computer

– Send back to the central office
• From key loggers can gather

– Passwords
– Confidential communication
– Keep track of your kids/employees

• From spyware can gather
– Web browsing habits
– Gather marketing information

Rootkits
• Insert file filters to cause files or directories

disappear from normal listings
– Can replace Windows API pointers (user

mode)
– Can also replace syscall table pointers

• Both require privilege, but most Windows
installs require privilege anyway
– The power of extensibility used for the dark

side
• Techniques apply equally well to Linux and

Mac

Sony Player DRM and Rootkits
• Bad press for Sony 2005

– Mark Russinovich's original observations
http://blogs.technet.com/markrussinovich/archive/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far.aspx#comments

– A timeline
http://www.boingboing.net/2005/11/14/sony_anticustomer_te.html

• To ensure that copy protection is not evaded
install rootkit to hide the protection code
– Available for other attackers to use
– Uninstallable
– Uses CPU and memory
– Not adequately noted in EULA

http://blogs.technet.com/markrussinovich/archive/2005/10/31/sony-rootkits-and-digital-rights-management-gone-too-far.aspx#comments
http://www.boingboing.net/2005/11/14/sony_anticustomer_te.html

Virus Operation
• Virus Phases:

– Dormant: Waiting on trigger event
– Propagation: Replicating to programs/disks
– Triggering: By event to execute payload
– Execution: Executing payload

• Details usually Machine/OS specific
– Exploits different features or weaknesses

Virus Pseudocode
• beginvirus:
• If spread-condition then begin

– For some set of target files do begin
• If target is not infected then begin

– Determine where to place virus instructions
– Copy instructions from beginvirus to endvirus into target
– Alter target to execute new instructions

• Perform some actions
• Goto beginning of infected program
• endvirus:

Virus Attachment
• A Virus can attach itself to a program or to data by

– Appending itself to either the beginning or end of either source
code or assembly, so it is activated when the program is run

– Integrate itself into the program, spread out code
– Integrate into data: executable text macro, scripting
– Macros and email attachments

• An activated virus may:
– Cause direct or immediate harm
– Run as a memory resident program (TSR, daemon, or service)
– Replace or relocate boot sector programs, start at system start-

up

Macros Viruses
• Macro code attached to some data file

– Interpreted rather than compiled
– Platform independent

• Interpreted by program using the file
– E.g., Word/Excel macros
– Esp. using auto command and command macros
– Often automatically invoked

• Blurs distinction between data and program files
making task of detection much harder

• Classic trade-off: ”ease of use” vs ”security”

Email Viruses
• Spread using email with attachment

containing a macro virus
– Melissa, LoveBug

• Triggered when user opens or executes
attachment
– Also when mail viewed by using scripting

features in mail agent
– Usually targeted at Microsoft Outlook mail

agent and Word/Excel documents, Microsoft
IIS

Basic Precautions
• Don’t import untrusted programs

– Who can you trust?
– Viruses have been found in commercial

shrink-wrap software
– Standard download sites have been corrupted

• Check MD5 hashes

• Scan for viruses, install anti-virus software
• Update anti-virus software regularly

Signature Scanning
• Early viruses had characteristic code

patterns known as signatures
• Create a database of patterns, search files

for patterns (McAffee)
• Use data-mining, learning, feature

extraction etc. to look for disguised or
obfuscated patterns

• Can only scan for known signatures

Signature Avoiding Viruses

• Polymorphic Virus produces varying but
operationally equivalent copies of itself
– Use alternative but equivalent instructions
– Gets around signature scanners. Whale virus,

32 variants
• Stealth Virus actively tries to hide all

signs of its presence
– A virus can intercept calls to read a file and

return correct values about file sizes etc. Brain
Virus

Another Signature Avoiding
Virus

• Encrypted Virus stores bulk of self
encrypted
– Small decrypt routine in clear
– Key stored in clear

Worms

• Propagate from one computer to another
• Viruses use email/infected media to

propagate to so differentiation is fuzzy

The Morris Worm Incident
• How 99 lines of code brought down the Internet (ARPANET actually)

 in November 1988.
• Robert Morris Jr. Ph.D student, Cornell, wrote a program that could:

– Connect to another computer, and find and use one of several
vulnerabilities (buffer overflow in fingerd, password cracking etc.) to
copy itself to that second computer.

– Begin to run the copy of itself at the new location.
– Both the original code and the copy would then repeat these actions in

an infinite loop to other computers on the ARPANET (mistake!)
• Morris was sentenced to three years of probation, 400 hours of

community service, and a fine of $10,050. He is now a Professor at
MIT.

• Worms have gotten bigger and more aggressive

Worm Phases
• Dormant
• Propagation

– Search for other systems to infect
– Establish connection to target remote system
– Replicate self onto remote system

• Triggering
• Execution

Who to target?

• Scanning
– Currently generally used
– Select random addresses

• Mix of addresses in current network (local
computers probably have similar vulnerabilities)
and remote networks

– No longer feasible in IPv6
• 32 bit vs 128 bit address space

Viruses and Worms in IPv4

• Slammer infected most of the IPv4 Internet in 10
minutes (75,000 hosts infected in one-half hour)

Source caida.org

Worms in IPv6
• Address space is 2^128 instead of 2^32

– Random address selection will not work
• Say ¼ of address in IP4 network run

Windows (2^30)
– 1 in 4 chance of finding a target with each

probe
• Spread that among 2^128 addresses

– 1 in 2^98 chances of finding a viable target

Viruses and Worms in IPv6
• Pure Viruses don’t change in IPv6 but hybrid and pure worms do.

– Hybrids and pure worms today rely in Internet scanning to infect other
hosts, this isn’t feasible as shown earlier in this presentation.

– At 1 million packets per second on a IPv6 subnet with 10,000 hosts it
would take over 28 years to find the first host to infect

– Let’s take a look at the same animation this time simulating how
slammer might fare in an all IPv6 Internet:

• Worm developers will adapt to IPv6 but pure random
scanning worms will be much more problematic for the
attacker. Best practices around worm detection and
mitigation from IPv4 remain.

28 Years Later

Other Techniques to Find
Targets

• Interesting Papers
– How to 0wn the Internet…

http://www.icir.org/vern/papers/cdc-usenix-sec02/
– Top speed of flash worms

http://www.caida.org/publications/papers/2004/topspeedworms/topspeed-worm04.pdf

• Hitlist Scanning
– Stealthy scans (randomized, over months), distributed scanning,

• DNS searches, Spiders (Code red, crawls for high
connectivity), listening on P2P networks, public lists

• Permutation scanning (divide up IP address space)
• Warhol worm- Hit list + permutation

http://www.icir.org/vern/papers/cdc-usenix-sec02/
http://www.caida.org/publications/papers/2004/topspeedworms/topspeed-worm04.pdf

Network Propagation
• Send small number of packets to reduce

detection
• UDP packets

– No ACK needed, so can spoof source address
• Connect to vulnerable network services

– Generally exercise buffer overflow
– Launch shell

• Running at high privilege (ideal)
• Or use as foothold to mount other attacks to gain privilege
• Or use as attack launch point

Worm Examples
• Morris Worm
• Code Red

– Exploited bug in MS IIS to penetrate and spread
– Probes random IPs for systems running IIS
– Had trigger time for denial-of-service attack
– 2nd wave infected 360000 servers in 14 hours

• Code Red 2 - trapdoor, for remote control
• Nimda - used multiple infection mechanisms,

email, file-sharing, web-client, IIS, Code Red 2
backdoor

NetBots

• Install on compromised machines
• Master sends commands to netbots

– Originally communicate through IRC
– Cause DDoS

• Stable framework to create your own
netbots
– http://www.egghelp.org/
– http://www.energymech.net/

http://www.egghelp.org/
http://www.energymech.net/
http://www.energymech.net/
http://www.energymech.net/

Covert Channels
• Sharing information through an unexpected

channel
– Example of students cheating in an exam

• Multiple choice: Cough for A, sigh for B, fidget for C
• Rely on shared resource not generally used

for communication
• While can be easily constructed, not widely

reported in the wild

Covert Channel
• Storage channel

– Presence or absence of file
– Percentage of disk quota used
– Amount of VM used

• Timing channel
– Give up time slice vs using whole time slice to

signal to others
– Also used as an attack on cryptographic

algorithms (and other programs)
• RSA side channel attack
 http://www.newscientisttech.com/article/dn10609
 http://eprint.iacr.org/2006/351.pdf

http://www.newscientisttech.com/article/dn10609
http://eprint.iacr.org/2006/351.pdf

General Defenses Against Malware
• User education
• Detect program changes

– Trip wire
• Scaning programs

– Virus scans
– Rootkit revealers

• Intrusion detectors
– NIDS to detect worm probes
– HIDS to detect odd behaviours on infected systems

• Keep system patches up to date
• Quarantine Systems

– Detect systems where version is out of spec and force off
network until further investigation

Security Relevant Program Flaws
• Malicious vs non-malicious flaws

– Malicious flaws introduced by programmers deliberately,
possibly by exploiting a non-malicious vulnerability. e.g., Worms,
Trapdoors, Logic Bombs

– Non malicious flaws are oversight. e.g., Buffer overflow,
TOCTTU flaws etc.

• Many way to categorize flaws:
– Validation error: incomplete input checks
– Domain error: improperly controlled access to data
– Serialization and aliasing: program flow order
– Inadequate identification and authentication
– Boundary condition errors
– Exploiting logic error

Buffer Overflow
• Most common pen-test security vulnerability 2003

(SANS/FBI)
• One of the most serious classes of security threats

– An attacker can gain partial or complete control of a host
• Buffer (array or string): space in which data can be held
• A buffer’s capacity is finite:

– char sample[10];
– sample[10] = ’A’;

• Buffer sizes do not have to be predefined. Out-of-bounds
error

What Happens When A Buffer
Overflows?

• A program that fails to check a buffer overflow
may allow vital code or data to be overwritten

• A buffer may overflow into and change:
– User’s own data structures
– User’s program code
– System data structures
– System program code

• Most common attack is to subvert the function of
a privileged program and take control of the host

Stack Smashing
• Attacker overflows stack allocated variable to

corrupt the return address
• Also called Stack Smashing Attack.

– Most common buffer-overflow attack
• Rewrite return address or frame pointer with

attack code, or rewrite pointer to address to
“attack” code in user memory

• On return executing code in stack buffer at
original program privilege
– Typically attackers exec a shell

Stack Structure

Function
Arguments
(a)

Return
Address

Saved
Frame Ptrvoid func(char *a) {

 char buffer[512];
 strcpy(buffer, a);
 ….
 }

High address

Low address

Previous
frames

Buffer[512]

Stack
Ptr

Frame
Ptr

Shell Code
• Insert code to spawn a shell
• Phrack article discusses how to do this from first

principles
– Create assembly code to exec /bin/sh
– Use GDB to get hex of binary code
– Rework assembly as necessary to avoid internal 0’s

• Could break attack if strcpy is used by attack target
• Will result in a hex string like:

– “\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x4
6\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x
80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/
sh”

Attack Buffer
• Buffer more than 512 bytes will replace other

information on the stack (like return address)
• Problem is determining absolute address in

buffer to jump to and ensuring you replace the
return address
– Pad with leading NOPs and trailing return addresses
– Then your guesses on the stack structure do not need

to be exact

NOPs Shell Code Return Address Replacements

Copied Stack

Function
Arguments

Return
Address

Saved
Frame Ptr

Previous
frames

Buffer[512]

N copies of
Address X

Previous
frames

NOPs

Shell
Code

Address X

Buffer Overflow Defenses

• Write correct code
• Use appropriate languages
• Use tools to analyze problems
• Address Space Randomization
• Make buffers non-executable

– Should never need to execute code on the
stack or on the heap

Writing Correct Code
• Simple solution, but expensive!

– Performance vs. correctness
– Software industry practices

• Automatic source-code analysis (limited
scope)
– Super greps like RATS and FlawFinder
– Embedded compiler analysis

• Audit teams, code review

Use Appropriate Language

• Languages that are type-safe and enforce
bound checks
– E.g., Java, ML, Smalltalk
– Perl and Taint-mode

• Subsections of language and/or code
standards
– C++ using only smart pointers, std::strings,

and STL containers
– Managed Code and the Common Runtime

Library (CRL)

Tools for Buffer Overflow Protection

• LibSafe
– http://www.research.avayalabs.com/project/libsafe/
– Intercept calls to functions with known problems and

perform extra checks
– Source is not necessary

• StackGuard and SSP/ProPolice
– Place “canary” values at key places on stack
– Terminator (fixed) or random values
– ProPolice patch to gcc

http://www.research.avayalabs.com/project/libsafe/

Address Space Randomization
• Vary the base stack address with each

execution
– Stack smashing must have absolute address to over

write function return address
– Enabled by default in some linuxes (e.g., FC3)

• Wastes some address space
– Less of an issue once we have 64 bit address space

• Not absolute
– Try many times and get lucky

Incomplete Parameter Validation

• Failure to perform “sanity checks” or “range
checks” on data

• Filling wrong values in correct format
• Example: USS Yorktown

– “Smart ship” with Aegis missiles and on-board control
system on Windows NT LAN

– Caused a database overload when someone entered
a zero in a data field–the action that triggered the
Yorktown’s LAN crash Sept. 21, 1997.

– Had to be towed into Norfolk, VA

Incomplete Parameter Validation
• Web inputs

– Assume user input is good
– User manipulates URL directly

• http://things.com/order.asp?
custID=101&part=55A&price=100

• http://things.com/order.asp?
custID=101&part=55A&price=10

• Enter special characters as user input that
will be interpreted differently later on
– Cross site scripting
– SQL injection attacks

04/10/07 52

Cross Site Scripting (XSS)
 Goal – Inject malicious code into web

pages viewed by others.
− Sites that allow HTML formatted user input to

be stored, e.g. Blog comments, wiki entries.
− Enter the following into a form that then shows

the original query in the response.
 <script>confirm("Do you hate purple

dinosaurs?");</script>
 Input cleansing made more difficult by

multiple encodings

Time-of-Check to Time-of-Use
Attacks

• A delay between checking permission to perform certain
operations and using this permission. Lazy binding

• Example: Separate file access check from file open
1. If access(file_path, “w”) == allowed
– file_id = open(file_path, “w”)
1. return file_id

• Say file_path=“/usr/tom/X”
– For step1, this is a simple file in tom’s directory
– For step2, /usr/Tom/x is a symlink to /etc/passwd

• Asynchronous validation flaw

Defense Through Attack
• Ethical hacking

– You too can become a certified ethical hacker
• http://www.eccouncil.org/ceh.htm

• Hip term for
– Penetration Testing
– Vulnerability analysis
– Vulnerability researching

http://www.eccouncil.org/ceh.htm

Penetration Testing
• Bring in outside team to “attack” system

– Well-defined rules of engagement, e.g.,
• no DOS but social engineering is allowed
• Specified target of attack
• Cause no permanent damage
• Amount of inside knowledge

• Benefits
– Ability to think outside the box may reveal new

issues
• Concerns

– All discovered flaws reported?
– Probably not systematic

Vulnerability Research
• Find exploits in deployed software

– Zero Day exploit – Exploit that is released
before fix is available

• Ethical issues once exploit is found
– How soon to reveal exploit after giving vendor

heads up?
– Can you protect your customers in the mean

time?

Software Fault Injection

• Hardware fault injection well used and
understood
– Software fault injection still emerging
– Active research area

• Identify input areas
– Generally network, but could also be files,

environment variables, command line
• Inject bad inputs and see what happens

Fault Injection Model

ServerClient

Fault
Injector

Auditor

Fuzzing

• A variant of the fault injection model
– Create “fuzzed” input to cause errors

• ShareFuzz
– Intercept all getenv() calls to return very, very

long strings

More Fuzz - SPIKE
• An input language for creating variant network

packets
• From WireShark output, make it easy to express

new packets
– a_binary(“00 01 02 03”)

Data: <00 01 02 03>
– a_block_size_big-endian_word(“Blockname”);

Data: <00 01 02 03 00 00 00 00>
– a_block_start(“Blockname”)

a_binary(“05 06 07 08”)
Data: <00 01 02 03 00 00 00 00 05 06 07 08>

– a_block_end(“Blockname”);
Data: <00 01 02 03 00 00 00 04 05 06 07 08>

Program Tracing

• Run target program in debugger
– Get first chance at all exceptions

• Instrument target program to concentrate
on expected vulnerability
– Hook functions

• ltrace/strace
– Lists library and system calls

Exploit Frameworks

• Metasploit
– http://www.metasploit.com/index.html

• Canvas
– http://www.immunitysec.com

• Core Impact
– http://

www.coresecurity.com/products/coreimpact/index.php

http://www.metasploit.com/index.html
http://www.immunitysec.com/
http://www.coresecurity.com/products/coreimpact/index.php
http://www.coresecurity.com/products/coreimpact/index.php

Key points

• Malware is real
– Propagation aspects
– Attack aspects

• Implementation flaws directly enable
system attacks

• Defense mechanisms
• Ethical Hacking

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

