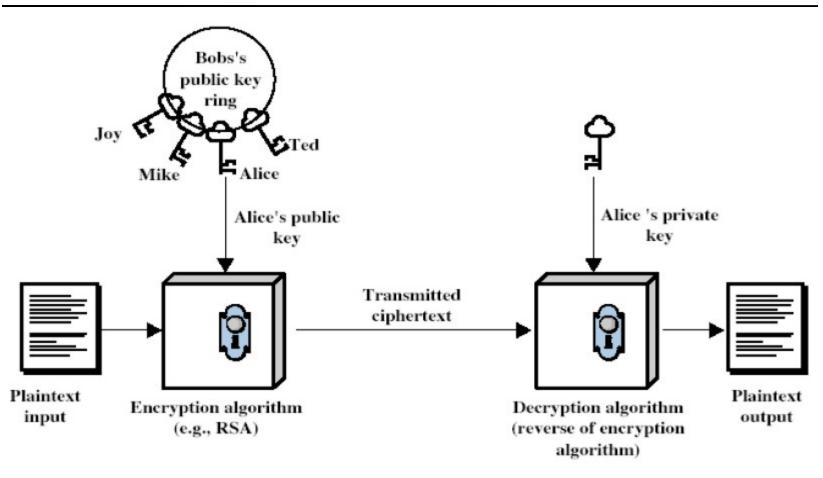
Public Key Cryptography and Cryptographic Hashes

CS461/ECE422 Fall 2009

Reading

- Computer Security: Art and Science Chapter 9
- Handbook of Applied Cryptography, Chapter
 8
 - http://www.cacr.math.uwaterloo.ca/hac/

Public-Key Cryptography



Slide #9-3

Public Key Cryptography

- Two keys
 - *Private key* known only to individual
 - Public key available to anyone
- Idea
 - Confidentiality: encipher using public key, decipher using private key
 - Integrity/authentication: encipher using private key, decipher using public one

Requirements

- 1. It must be computationally easy to encipher or decipher a message given the appropriate key
- 2. It must be computationally infeasible to derive the private key from the public key
- 3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

General Facts about Public Key Systems

- Public Key Systems are much slower than Symmetric Key Systems
 - RSA 100 to 1000 times slower than DES. 10,000 times slower than AES?
 - Generally used in conjunction with a symmetric system for bulk encryption
- Public Key Systems are based on "hard" problems
 - Factoring large composites of primes, discrete logarithms, elliptic curves
- Only a handful of public key systems perform both encryption and signatures

Diffie-Hellman

- The first public key cryptosystem proposed
- Usually used for exchanging keys securely
- Compute a common, shared key
 - Called a *symmetric key exchange protocol*
- Based on discrete logarithm problem
 - Given integers *n* and *g* and prime number *p*, compute *k* such that $n = g^k \mod p$
 - Solutions known for small *p*
 - Solutions computationally infeasible as *p* grows large

Algorithm

- Public Constants: prime p, integer $g \neq 0, 1$, or p-1
- Choose private keys and compute public keys
 - Anne chooses private key kAnne, computes public key $KAnne = g^{kAnne} \mod p$
 - Similarly Bob chooses kBob, computes $Kbob = g^{kBob} \mod p$
- Exchange public keys and compute shared information
 - To communicate with Bob, Anne computes *Kshared* = *KBob^{kAnne}* mod p
 - To communicate with Anne, Bob computes $Kshared = KAnne^{kBob} \mod p$ Slide #9-8

Working the Equations

- (KBob)^{kAnne} mod p
- $= (g^{kBob} \mod p)^{kAnne} \mod p$
- $= g^{kBob \ kAnne} \ mod \ p$
- (Kalice)^{*kBob*} mod p
- $= (g^{kAlice} \mod p)^{kBob} \mod p$
- $= g^{kAlice \ kBob} \mod p$
- If Eve sees Kalice and Kbob, why can't she compute the common key?

Example

- Assume p = 53 and g = 17
- Alice chooses kAlice = 5- Then $KAlice = 17^5 \mod 53 = 40$
- Bob chooses kBob = 7
 - Then *KBob* = $17^7 \mod 53 = 6$
- Shared key:
 - $-KBob^{kAlice} \mod p = 6^5 \mod 53 = 38$
 - $-KAlice^{kBob} \mod p = 40^7 \mod 53 = 38$

Real public DH values

- For IPSec and SSL, there are a small set of g's and p's published that all standard implementations support.
 - Group 1 and 2
 - http://tools.ietf.org/html/rfc2409
 - Group 5 and newer proposed values
 - http://tools.ietf.org/html/draft-ietf-ipsec-ike-modp-gro

RSA

- by Rivest, Shamir& Adleman of MIT in 1977
- best known & widely used public-key scheme
- based on exponentiation in a finite (Galois) field over integers modulo a prime

- nb. exponentiation takes O((log n)3) operations (easy)

- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers

- nb. factorization takes $O(e^{\log n \log \log n})$ operations (hard)

Modular Arithmetic

- a mod b = x if for some $k \ge 0$, bk + x = a
- Associativity, Commutativity, and Distributivity hold in Modular Arithmetic
- Inverses also exist in modular arithmetic

 $-a + (-a) \mod n = 0$

 $-a * a^{-1} \mod n = 1$

Modular Arithmetic

Reducibility also holds
- (a + b) mod n = (a mod n + b mod n) mod n

 $-a * b \mod n = ((a \mod n) * b \mod n) \mod n$

- Fermat's Thm: if p is any prime integer and a is an integer, then a^p mod p = a
 - Corollary: a^{p-1} mod p = 1 if a != 0 and a is relatively prime to p

Background

- Totient function $\phi(n)$
 - Number of positive integers less than *n* and relatively prime to *n*
 - *Relatively prime* means with no factors in common with *n*
- Example: $\phi(10) = ?$
 - 4 because 1, 3, 7, 9 are relatively prime to 10
- Example: $\phi(p) = ?$ where p is a prime
 - p-1 because all lower numbers are relatively prime

Background

• Euler generalized Fermat's Thm for composite numbers.

- Recall Fermat's Thm $a^{p-1}=1 \mod p$ if a != 0

- Euler's Thm: $x^{\phi(n)}=1 \mod n$
 - Where q and p are primes

-n = pq

- then
$$\phi(n) = (p-1)(q-1)$$

RSA Algorithm

- Choose two large prime numbers p, q
 Let n = pq; then \$\phi(n) = (p-1)(q-1)\$
 - Choose e < n such that e is relatively prime to $\phi(n)$.
 - Compute *d* such that $ed \mod \phi(n) = 1$
- Public key: (*e*, *n*); private key: *d*
- Encipher: $c = m^e \mod n$
- Decipher: $m = c^d \mod n$
- Generically: $F(V, x) = V^x \mod n$

Slide #9-17

Working through the equations

- $C = F(M, e) = M^e \mod n$
- M = F(F(M, e), d)
- $M = (M^e \mod n)^d \mod n$
- $M = M^{ed} \mod n$

$$-ed \mod \phi(n) = 1$$

$$-\mathbf{k}^*\phi(n) + 1 = \mathbf{ed}$$

- $M = (M \mod n * M^{k \phi(n)} \mod n) \mod n$ - By Euler' theorem $X^{\phi(n)} \mod n = 1$
- $M = M \mod n$

Where is the security?

- What problem must you solve to discover d?
- Public key: (*e*, *n*); private key: *d*

Security Services

- Confidentiality
 - Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
 - Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

More Security Services

- Integrity
 - Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
 - Message enciphered with private key came from someone who knew it

Example: Confidentiality

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Alice chooses e = 17, making d = 53
- Bob wants to send Alice secret message HELLO (07 04 11 11 14)
 - $-07^{17} \mod 77 = 28$
 - $-04^{17} \mod 77 = 16$
 - $-11^{17} \mod 77 = 44$
 - $-11^{17} \mod 77 = 44$
 - $-14^{17} \mod 77 = 42$
- Bob sends 28 16 44 44 42

Example

- Alice receives 28 16 44 44 42
- Alice uses private key, d = 53, to decrypt message:
 - $-28^{53} \mod 77 = 07$
 - $-16^{53} \mod 77 = 04$
 - $-44^{53} \mod 77 = 11$
 - $-44^{53} \mod 77 = 11$
 - $-42^{53} \mod 77 = 14$
- Alice translates message to letters to read HELLO
 - No one else could read it, as only Alice knows her private key and that is needed for decryption

Example: Integrity/Authentication

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Alice chooses e = 17, making d = 53
- Alice wants to send Bob message HELLO (07 04 11 11 14) so Bob knows it is what Alice sent (no changes in transit, and authenticated)
 - $07^{53} \mod 77 = 35$
 - $04^{53} \mod 77 = 09$
 - $-11^{53} \mod 77 = 44$
 - $-11^{53} \mod 77 = 44$
 - $-14^{53} \mod 77 = 49$
- Alice sends 35 09 44 44 49

Example

- Bob receives 35 09 44 44 49
- Bob uses Alice's public key, e = 17, n = 77, to decrypt message:
 - $35^{17} \mod{77} = 07$
 - $09^{17} \mod 77 = 04$
 - $44^{17} \mod 77 = 11$
 - $44^{17} \mod 77 = 11$
 - $49^{17} \mod 77 = 14$
- Bob translates message to letters to read HELLO
 - Alice sent it as only she knows her private key, so no one else could have enciphered it
 - If (enciphered) message's blocks (letters) altered in transit, would not decrypt properly

Example: Both

- Alice wants to send Bob message HELLO both enciphered and authenticated (integrity-checked)
 - Alice's keys: public (17, 77); private: 53
 - Bob's keys: public: (37, 77); private: 13
- Alice enciphers HELLO (07 04 11 11 14):
 - $(07^{53} \mod 77)^{37} \mod 77 = 07$
 - $(04^{53} \mod 77)^{37} \mod 77 = 37$
 - $(11^{53} \mod 77)^{37} \mod 77 = 44$
 - $(11^{53} \mod 77)^{37} \mod 77 = 44$
 - $(14^{53} \mod 77)^{37} \mod 77 = 14$
- Alice sends 07 37 44 44 14

Warnings

- Encipher message in blocks considerably larger than the examples here
 - If 1 character per block, RSA can be broken using statistical attacks (just like classical cryptosystems)
 - Attacker cannot alter letters, but can rearrange them and alter message meaning
 - Example: reverse enciphered message of text ON to get NO

Direct Digital Signature

- Involve only sender & receiver
- Assumed receiver has sender's public-key
- Digital signature made by sender signing entire message or hash with private-key
- Can encrypt using receivers public-key
- Important that sign first then encrypt message & signature
- Security depends on sender's private-key

Potential problems

Sign-Encrypt vs. Encrypt-Sign

- Is Sign-Encrypt Enough?
 - Recipient knows who wrote the message
 - But who encrypted it?
 - Surreptitious forwarding
- Does Encrypt-Sign make sense?
 - Signature can be easily replaced
 - RSA Signatures

Options to Fix

- Naming repairs
 - Include Senders name
 - Include Recipients name
- Sign/Encrypt/Sign
- Encrypt/Sign/Encrypt
- Which is the best?
 - Add recipient's name, Sign and Encrypt
 - Other solutions all require extra hash (of message or key)

Hash or Checksums

- Mathematical function to generate a set of k bits from a set of n bits (where $k \le n$).
 - k is smaller then n except in unusual circumstances
- Example: ASCII parity bit
 - ASCII has 7 bits; 8th bit is "parity"
 - Even parity: even number of 1 bits
 - Odd parity: odd number of 1 bits

Example Use

- Bob receives "10111101" as bits.
 - Sender is using even parity; 6 1 bits, so character was received correctly
 - Note: could be garbled, but 2 bits would need to have been changed to preserve parity
 - Sender is using odd parity; even number of 1
 bits, so character was not received correctly

Another Example

- 8-bit Cyclic Redundancy Check (CRC)
 - XOR all bytes in the file/message
 - Good for detecting accidental errors
 - But easy for malicious user to "fix up" to match altered message
- For example, change the 4th bit in one of the bytes
 Fix up by flipping the 4th bit in the CRC
- Easy to find a M' that has the same CRC

Cryptographic Hash or Checksum or Message Digest

- $h: A \rightarrow B:$
 - For any $x \in A$, h(x) is easy to compute
 - For any $y \in B$, it is computationally infeasible to find $x \in A$ such that h(x) = y

•One way function, e.g., computing x^3 vs cube root of x by hand

- It is computationally infeasible to find two inputs x, $x' \in A$ such that $x \neq x'$ and h(x) = h(x')
 - Alternate form: Given any $x \in A$, it is computationally infeasible to find a different $x' \in A$ such that h(x) = h(x').

Collisions

- If $x \neq x'$ and h(x) = h(x'), x and x' are a *collision*
 - Pigeonhole principle: if there are *n* containers for *n*+1 objects, then at least one container will have 2 objects in it.
 - Application: if there are 32 files and 8 possible cryptographic checksum values, at least one value corresponds to at least 4 files
 - How many files until you are guaranteed a collision? Until you probably have a collision?

Birthday Paradox

- What is the probability that someone in the room has the same birthday as me?
- What is the probability that two people in the room have the same birthday?

$$-P(n) = 1 - (365!/(365^{n} (365 - n)!))$$

- $-P(n) > \frac{1}{2}$ for n = 23
- Section 2.15 Handbook of Applied Cryptography
- http://en.wikipedia.org/wiki/Birthday_paradox

Birthday Paradox

• In general, probability of a collision of reaches 50% for *M* units when

-n = sqrt(M)

• If hash has m bits, this means $M = 2^m$ possible hash values

 $-n = 2^{m/2}$ for 50% probability collision

Another View of Collisions

- **Birthday attack** works thus:
 - opponent generates 2^{m/2} variations of a valid message all with essentially the same meaning
 - opponent also generates 2^{m/2} variations of a desired fraudulent message
 - two sets of messages are compared to find pair with same hash (probability > 0.5 by birthday paradox)
 - have user sign the valid message, then substitute the forgery which will have a valid signature
- Need to use larger MACs

Keyed vs Keyless Hash

- Keyless hash anyone can recompute given the message and indication of the algorithm
- Keyed hash must have access to a key to recompute the hash
- When is each option appropriate?

MD5 and SHA

- Most widely used keyless crypto hashes
- Both are round based bit operations
 - Similar in spirit to AES and DES
 - Looking for avalanche effect to make output appear random
- MD5 is 128 bits and SHA-1 is 160 bits

More on SHA

- Standard put forth by NIST
- SHA spec

- http://csrc.nist.gov/CryptoToolkit/tkhash.html

- Comes in different flavors that vary based on output size
 - SHA-1 outputs 160 bits
 - The other SHA-X flavors output X bits

SHA-1 Broken

- Chinese researchers had a break through
 - •http://www.schneier.com/blog/archives/2005/02/ -Recent results show that you can find collisions in 2^69 attempts which would be less than 2^80 from brute force -Does not affect HMAC-SHA
- NIST published standards promoting using of larger SHA's

-http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.ht ml

-Preparing for public competition for new algorithm

Message Authentication Codes

- MAC is a crypto hash that is a proof of a message's integrity
 - Important that adversary cannot fixup MAC if he changes message
- MAC's rely on keys to ensure integrity
 - Either Crypto Hash is encrypted already
 - Or Crypto Hash must be augmented to take a key

Use Symmetric Ciphers for Keyed Hash

- Can use DES or AES in CBC mode
 Last block is the hash
- DES with 64 bit block size is too small to be effective MAC

HMAC

- Make keyed cryptographic checksums from keyless cryptographic checksums
- *h* keyless cryptographic checksum function that takes data in blocks of *b* bytes and outputs blocks of *l* bytes. *k*' is cryptographic key of length *b* bytes
- *ipad* is 00110110 repeated b times
- *opad* is 01011100 repeated *b* times
- HMAC- $h(k, m) = h(k' \oplus opad || h(k' \oplus ipad || m))$ \oplus exclusive or, || concatenation

Key Points

- Symmetric cryptosystems encipher and decipher using the same key
 - Or one key is easily derived from the other
- Public key cryptosystems encipher and decipher using different keys
 - Computationally infeasible to derive one from the other
- Cryptographic checksums provide a check on integrity