Classical Cryptography

CS461/ECE422
Fall 2009

Reading

- CS Chapter 9 section 1 through 2.2
- Applied Cryptography, Bruce Schneier
- Handbook of Applied Cryptography, Menezes, van Oorschot, Vanstone
- Available online
http://www.cacr.math.uwaterloo.ca/hac/

Overview

- Classical Cryptography
- Transposition Ciphers
- Substitution Ciphers
- Cæsar cipher
- Vigènere cipher
- One Time Pad
- Book cipher
- Enigma

Cryptosystem

- 5-tuple ($\mathcal{E}, \mathcal{D}, \mathcal{M}, \mathcal{K}, C)$
- \mathcal{M} set of plaintexts
- \mathcal{K} set of keys
- C set of ciphertexts
- E set of encryption functions $e: \mathcal{M} \times \mathcal{K} \rightarrow C$
- \mathcal{D} set of decryption functions $d: C \times \mathcal{K} \rightarrow \mathcal{M}$
- Encrypting function: $E\left(p_{i}, k_{i}\right)=c_{i}$
- Decrypting function: $\mathrm{D}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{k}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}$

Example

- Example: Cæsar cipher (The most basic cipher)
- $\mathcal{M}=$ \{ sequences of letters $\}$
- $\mathcal{K}=\{i \mid i$ is an integer and $0 \leq i \leq 25\}$
- $\mathcal{E}=\{E \mid k \in \mathcal{K}$ and for all letters m,

$$
E(m, k)=(m+k) \bmod 26\}
$$

- $\mathcal{D}=\{D \mid k \in \mathcal{K}$ and for all letters c,

$$
D(c, k)=(26+c-k) \bmod 26\}
$$

- $C=\mathcal{M}$

Attacks

- Opponent whose goal is to break cryptosystem is the adversary
- Standard cryptographic practice: Assume adversary knows algorithm used, but not the key
- Three types of attacks:
- ciphertext only: adversary has only ciphertext; goal is to find plaintext, possibly key
- known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
- chosen plaintext: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Basis for Attacks

- Mathematical attacks
- Based on analysis of underlying mathematics
- Statistical attacks
- Make assumptions about the distribution of letters, pairs of letters (diagrams), triplets of letters (trigrams), etc.
- Called models of the language
- E.g. Caesar Cipher, letter E
- Examine ciphertext, correlate properties with the assumptions.

Classical Cryptography

- Sender, receiver share common key
- Keys may be the same, or trivial to derive from one another
- Sometimes called symmetric cryptography
- Two basic types
- Transposition ciphers
- Substitution ciphers
- Combinations are called product ciphers

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher or 2-columnar transposition)
- Plaintext is HELLO WORLD
- HE

LL
OW
OR
LD

- Ciphertext is HLOOL ELWRD

Transposition Cipher

- Generalize to n-columnar transpositions
- Example 3-columnar
- HEL

LOW
ORL
DXX

- HLODEORXLWLX

Attacking the Cipher

- Anagramming
- If 1-gram frequencies match English frequencies, but other n-gram frequencies do not, probably transposition
- Rearrange letters to form n-grams with highest frequencies

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H
- HE 0.0305
- HO 0.0043
- HL, HW, HR, HD < 0.0010
- Frequencies of 2-grams ending in H
- WH 0.0026
- EH, LH, OH, RH, DH ≤ 0.0002
- Implies E follows H

Example

- Arrange so the H and E are adjacent

HE
LL
OW
OR
LD

- Read off across, then down, to get original plaintext

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Cæsar cipher)
- Plaintext is HELLO WORLD
- Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
- Key is 3 , usually written as letter ' D '
- Ciphertext is KHOOR ZRUOG

Attacking the Cipher

- Exhaustive search
- If the key space is small enough, try all possible keys until you find the right one
- Cæsar cipher has 26 possible keys
- Statistical analysis
- Compare to 1-gram model of English
- CryptoQuote techniques

Statistical Attack

- Compute frequency of each letter in ciphertext:

$$
\begin{array}{llllll}
\text { G } 0.1 & \text { H } 0.1 & \text { K } 0.1 & \text { O } 0.3 \\
\text { R } 0.2 & \text { U } & 0.1 & \text { Z } & 0.1 & \\
\end{array}
$$

- Apply 1-gram model of English
- Frequency of characters (1-grams) in English is on next slide
- http://math.ucsd.edu/~crypto/java/EARLYCIPH

Character Frequencies

a	0.080	h	0.060	n	0.070	t	0.090
b	0.015	i	0.065	o	0.080	u	0.030
c	0.030	j	0.005	p	0.020	v	0.010
d	0.040	k	0.005	q	0.002	w	0.015
e	$\mathbf{0 . 1 3 0}$	l	0.035	r	0.065	x	0.005
f	0.020	m	0.030	s	0.060	y	0.020
g	0.015					z	0.002

Statistical Analysis

- $f(c)$ frequency of character c in ciphertext $\forall \varphi(i)$ correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i

$$
\varphi(i)=\Sigma_{0 \leq c \leq 25} f(c) p(c-i) \text { so here, }
$$

$$
\varphi(i)=0.1 p(6-i)+0.1 p(7-i)+0.1 p(10-
$$

$$
i)+0.3 p(14-i)+0.2 p(17-i)+0.1 p(20-
$$

$$
i)+0.1 p(25-i)
$$

- $p(x)$ is frequency of character x in English

Correlation: $\varphi(i)$ for $0 \leq i \leq 25$

\boldsymbol{i}	$\boldsymbol{\varphi}(\boldsymbol{i})$	\boldsymbol{i}	$\boldsymbol{\varphi}(\boldsymbol{i})$	\boldsymbol{i}	$\boldsymbol{\varphi}(\boldsymbol{i})$	\boldsymbol{i}	$\boldsymbol{\varphi}(\boldsymbol{i})$
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	$\mathbf{1 4}$	$\mathbf{0 . 0 5 3 5}$	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
$\mathbf{3}$	$\mathbf{0 . 0 5 7 5}$	$\mathbf{1 0}$	$\mathbf{0 . 0 6 3 5}$	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
$\mathbf{6}$	$\mathbf{0 . 0 6 6 0}$					25	0.0430

The Result

- Most probable keys, based on φ :
$-i=6, \varphi(i)=0.0660$
- plaintext EBIIL TLOLA
$-i=10, \varphi(i)=0.0635$
- plaintext AXEEH PHKEW
$-i=3, \varphi(i)=0.0575$
- plaintext HELLO WORLD
$-i=14, \varphi(i)=0.0535$
- plaintext WTAAD LDGAS
- Only English phrase is for $i=3$
- That's the key (3 or 'D')

Cæsar’s Problem

- Key is too short
- Can be found by exhaustive search
- Statistical frequencies not concealed well
- They look too much like regular English letters
- Improve the substitution permutation
- Increase number of mapping options from 26

Vigènere Cipher

- Like Cæsar cipher, but use a phrase as key
- Example
- Message THE BOY HAS THE BALL
- Key VIG
- Encipher using Cæsar cipher for each letter:

$$
\begin{array}{ll}
\text { key } & \text { VIGVIGVIGVIGVIGV } \\
\text { plain } & \text { THEBOYHASTHEBALL } \\
\text { cipher } & \text { OPKWWECIYOPKWIRG }
\end{array}
$$

I \mid i $j k l m n o p q r s t u v i x y z a b d e f g h$

$N \mid n \circ p q r s t u v w x y z a b c d e f g h i j k l m$

P|pqrstuvixy zabcdefghijkimno

$W \mid W x y z a b c d e f g h i j k l m n o p q r s t u v$
$X \mid x y z a b c d e f g h i j k l m n o p q r s t u v w$
$Y \mid y z a b c d e f g h i j k l m n o p q r s t u v w x$

Relevant Parts of Tableau

	G	I	V
A	G	I	V
B	H	J	W
E	L	M	Z
H	N	P	C
L	R	T	G
O	U	W	J
S	Y	A	N
T	Z	B	O
Y	E	H	T

- Tableau shown has relevant rows, columns only
- Example encipherments(?):
- key V, letter T: follow V column down to T row (giving "O")
- Key I, letter H: follow I column down to H row (giving "P")

Useful Terms

- period: length of key
- In earlier example, period is 3
- tableau: table used to encipher and decipher
- Vigènere cipher has key letters on top, plaintext letters on the left
- polyalphabetic: the key has several different letters
- Cæsar cipher is monoalphabetic

Attacking the Cipher

- Approach
- Establish period; call it n
- Break message into n parts, each part being enciphered using the same key letter
- Solve each part
- Automated in applet
- http://math.ucsd.edu/~crypto/java/EARLYCIP HERS/Vigenere.html

The Target Cipher

- We want to break this cipher:

ADQYS MIUSB OXKKT MIBHK IZOOO
EQOOG IFBAG KAUMF VVTAA CIDTW
MOCIO EQOOG BMBFV ZGGWP CIEKQ
HSNEW VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH AJMOC HIUIX

Establish Period

- Kaskski: repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext
- Example:
key VIGVIGVIGVIGVIGV
plain THEBOYHASTHEBALL
cipher OPKWWECIYOPKWIRG
Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9 , the period is a factor of 9 (that is, 1,3 , or 9)

Repetitions in Example

Letters	Start	End	Distance	Factors
MI	5	15	10	2,5
OO	22	27	5	5
OEQOOG	24	54	30	$2,3,5$
FV	39	63	24	$2,2,2,3$
AA	43	87	44	$2,2,11$
MOC	50	122	72	$2,2,2,3,3$
QO	56	105	49	7,7
PC	69	117	48	$2,2,2,2,3$
NE	77	83	6	2,3
SV	94	97	3	3
CH	118	124	6	2,3

Estimate of Period

- OEQOOG is probably not a coincidence
- It's too long for that
- Period may be $1,2,3,5,6,10,15$, or 30
- Most others (7/10) have 2 in their factors
- Almost as many (6/10) have 3 in their factors
- Begin with period of $2 \times 3=6$

Check on Period

- Index of coincidence is probability that two randomly chosen letters from ciphertext will be the same
- Tabulated for different periods:
$\begin{array}{llllll}1 & 0.066 & \mathbf{3} & 0.047 & \mathbf{5} & 0.044\end{array}$
$\begin{array}{lllll}2 & 0.052 & \mathbf{4} & 0.045 & \mathbf{1 0} 0.041\end{array}$
Large 0.038

Compute IC

- $\mathrm{IC}=[n(n-1)]^{-1} \sum_{0 \leq i \leq 25}\left[F_{i}\left(F_{i}-1\right)\right]$
- where n is length of ciphertext and F_{i} the number of times character i occurs in ciphertext
- Here, $\mathrm{IC}=0.043$
- Indicates a key of slightly more than 5
- This is a statistical measure, so it can be an error, but it agrees with the previous estimate (which was 6)

Splitting Into Alphabets

alphabet 1: AIKHOIATTOBGEEERNEOSAI alphabet 2: DUKKEFUAWEMGKWDWSUFWJU alphabet 3: QSTIQBMAMQBWQVLKVTMTMI alphabet 4: YBMZOAFCOOFPHEAXPQEPOX alphabet 5: SOIOOGVICOVCSVASHOGCC alphabet 6: MXBOGKVDIGZINNVVCI JHH

- ICs (\#1, 0.069; \#2, 0.078; \#3, 0.078; \#4, 0.056; \#5, $0.124 ; \# 6,0.043)$ indicate all alphabets have period 1, except \#4 and \#6; consider them as the error of statistics

Frequency Examination

	ABCDEFGHIJKLMNOPQRSTUVWXYZ
1	31004011301001300112000000
2	10022210013010000010404000
3	12000000201140004013021000
4	21102201000010431000000211
5	10500021200000500030020000
1	01110022311012100000030101

Letter frequencies are (H high, M medium, L low):
HMMMHMMHHMMMMHHMLHHHMLLLLL

Begin Decryption

- First matches characteristics of unshifted alphabet
- Third matches if I shifted to A
- Sixth matches if V shifted to A
- Substitute into ciphertext (bold are substitutions) ADIYS RIUKB OCKKL MIGHK AZOTO EIOOL IFTAG PAUEF VATAS CIITW EOCNO EIOOL BMTFV EGGOP CNEKI HSSEW NECSE DDAAA RWCXS ANSNP HHEUL QONOF EEGOS WLPCM AJEOC MIUAX

Look For Clues

- AJE in last line suggests "are", meaning second alphabet maps A into S :
ALIYS RICKB OCKSL MIGHS AZOTO MIOOL INTAG PACEF VATIS CIITE EOCNO MIOOL BUTFV EGOOP CNESI HSSEE NECSE LDAAA RECXS ANANP HHECL QONON EEGOS ELPCM AREOC MICAX

Next Alphabet

- MICAX in last line suggests "mical" (a common ending for an adjective), meaning fourth alphabet maps O into A:
ALIMS RICKP OCKSL AIGHS ANOTO MICOL INTOG PACET VATIS QIITE ECCNO MICOL BUTTV EGOOD CNESI VSSEE NSCSE LDOAA RECLS ANAND HHECL EONON ESGOS ELDCM ARECC MICAL

Got It!

- QI means that U maps into I, as Q is always followed by U...So we get the key for the fifth alphabet:
ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS PACET HATIS QUITE ECONO MICAL BUTTH EGOOD ONESI VESEE NSOSE LDOMA RECLE ANAND THECL EANON ESSOS ELDOM ARECO MICAL

One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
- Provably unbreakable
- Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
- Warning: keys must be random, or you can attack the cipher by trying to regenerate the key
- Approximations, such as using pseudorandom number generators to generate keys, are not random

Book Cipher

- Approximate one-time pad with book text
- Sender and receiver agree on text to pull key from
- Bible, Koran, Phone Book
- Problem is that book text is not random
- Combine English with English
- Can still perform language based statistical analysis

Enigma - Rotor Machines

- Another approximation of one-time pad
- Substitution cipher
- Each rotor is a substitution
- Changes in rotor position change how substitutions are stacked
- Key press passes through all rotors and back through a reflector rotor
- Rotors advance after each key press changing the substitution.
- Key is initial position of the rotors
- More details
- http://www.codesandciphers.org.uk/enigma/

Rotor Mappings

- Rotor I
- ABCDEF G HIJKLMNOPQRSTUVWXYZ BDFHJL C PRTXVZNYEIWGAKMUSQO
- Rotor II
- AB C DEFGHIJKLMNOPQRSTUVWXYZ AJ D KSIRUXBLHWTMCQGZNPYFVOE
- Rotor III
- ABC D EFGHIJKLMNOPQRSTUVWXYZ EKM F LGDQVZNTOWYHXUSPAIBRCJ
- Reflector
- ABCDE F GHIJKLMNOPQRSTUVWXYZ YRUHQ S LDPXNGOKMIEBFZCWVJAT

Lessons from Enigma

- The importance of known plaintext (cribs)
- Mechanical assisted key breaking
- Leading to modern computers
- Information in the pattern of traffic
- Traffic analysis
- Humans in the loop are important
- Information from spies
- Poor user procedures
- Birthday messages - many cribs
- Repeated patterns
- Reluctance to believe cipher has been broken

