
Slide #2-1

Access Control Matrix and
Safety Results

CS461/ECE422
Computer Security I, Fall 2009

Based on slides provided by Matt Bishop for use with
Computer Security: Art and Science
Plus HRU examples from Ravi Sandhu

Slide #2-2

Reading
• Chapter 2 – Access Control Matrix
• A little bit from Chapter 3 to talk about

Safety

Slide #2-3

Outline
• Motivation
• Access Control Matrix Model
• Protection State Transitions
• HRU Model

– Commands
– Conditional Commands

• Basic Safety results

Slide #2-4

Motivation
• Access Control Matrix (ACM) and related

concepts provides very basic abstraction
– Map different systems to a common form for

comparison
– Enables standard proof techniques
– Not directly used in implementation

• Basis for key safety decidability results

Slide #2-5

Definitions
• Protection state of system

– Describes current settings, values of system
relevant to protection

• Access control matrix
– Describes protection state precisely
– Matrix describing rights of subjects
– State transitions change elements of matrix

Slide #2-6

Description

objects (entities)

su
bj

ec
ts

s1

s2

…

sn

o1 … om s1 … sn • Subjects S = { s1,…,sn }
• Objects O = { o1,…,om }
• Rights R = { r1,…,rk }

• Entries A[si, oj] ⊆ R
• A[si, oj] = { rx, …, ry }

means subject si has rights
rx, …, ry over object oj

Slide #2-7

Example 1
• Processes p, q
• Files f, g
• Rights r, w, x, a, o

f g p q
p rwo r rwxo w
q a ro r rwxo

Slide #2-8

Example 2
• Procedures inc_ctr, dec_ctr, manage
• Variable counter
• Rights +, –, call

 counter inc_ctr dec_ctr manage
inc_ctr +
dec_ctr –
manage call call call

Slide #2-9

Boolean Expression Evaluation
• ACM controls access to database fields

– Subjects have attributes
– Verbs define type of access
– Rules associated with objects, verb pair

• Subject attempts to access object
– Rule for object, verb evaluated, grants or denies

access

Slide #2-10

Example
• Subject annie

– Attributes role (artist), groups (creative)
• Verb paint

– Default 0 (deny unless explicitly granted)
• Object picture

– Rule:
paint: ‘artist’ in subject.role and

‘creative’ in subject.groups and
time.hour ≥ 0 and time.hour < 5

Slide #2-11

ACM at 3AM and 10AM

… picture …

…
 a

nn
ie

 …

paint

At 3AM, time condition
met; ACM is:

… picture …

…
 a

nn
ie

 …

At 10AM, time condition
not met; ACM is:

Slide #2-12

History
Query-Set overlap limit = 2
Database:
name position age salary
Alice teacher 45 $40,000
Bob aide 20 $20,000
Carol principal 37 $60,000
Dave teacher 50 $50,000
Eve teacher 33 $50,000

Queries:
C1: sum(salary, “position = teacher”) = 140,000
C2: count(set(age < 40 & position = teacher)
C3: sum(salary, “age > 40 & position = teacher”) should not
be answered (deduce Eve's salary)

Slide #2-13

State Transitions
• Change the protection state of system
• |– represents transition

– Xi |– τ Xi+1: command τ moves system from state
Xi to Xi+1

– Xi |– * Xi+1: a sequence of commands moves
system from state Xi to Xi+1

• Commands often called transformation
procedures

Slide #2-14

Example Transitions

Slide #2-15

Example Composite Transition

Slide #2-16

HRU Model
• Harrison, Ruzzo, and Ullman proved key

safety results in 1976
• Talked about systems

– With initial protection state expressed in ACM
– State transition commands built from a set of

primitive operations
– Applied conditionally.

Slide #2-17

HRU Commands and Operations
• command α(X1, X2 , . . ., Xk)

if rl in A[Xs1, Xo1] and r2 in A[Xs2, Xo2] and ... rk in
A[Xsk, Xok]
then
op1; op2; … opn

end
• 6 Primitive Operations

• enter r into A[Xs, Xo]
• delete r from A[Xs, Xo]
• create subject Xs
• create object Xo
• destroy subject Xs
• destroy object Xo

Slide #2-18

Create Subject
• Precondition: s ∉ S
• Primitive command: create subject s
• Postconditions:

– S′ = S ∪{ s }, O′ = O ∪{ s }
– (∀y ∈ O′)[a′[s, y] = ∅], (∀x ∈ S′)[a′[x, s] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a′[x, y] = a[x, y]]

Slide #2-19

Create Object
• Precondition: o ∉ O
• Primitive command: create object o
• Postconditions:

– S′ = S, O′ = O ∪ { o }
– (∀x ∈ S′)[a′[x, o] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a′[x, y] = a[x, y]]

Slide #2-20

Add Right
• Precondition: s ∈ S, o ∈ O
• Primitive command: enter r into a[s, o]
• Postconditions:

– S′ = S, O′ = O
– a′[s, o] = a[s, o] ∪ { r }
– (∀x ∈ S′)(∀y ∈ O′ – { o }) [a′[x, y] = a[x, y]]
– (∀x ∈ S′ – { s })(∀y ∈ O′) [a′[x, y] = a[x, y]]

Slide #2-21

Delete Right
• Precondition: s ∈ S, o ∈ O
• Primitive command: delete r from a[s, o]
• Postconditions:

– S′ = S, O′ = O
– a′[s, o] = a[s, o] – { r }
– (∀x ∈ S′)(∀y ∈ O′ – { o }) [a′[x, y] = a[x, y]]
– (∀x ∈ S′ – { s })(∀y ∈ O′) [a′[x, y] = a[x, y]]

Slide #2-22

Destroy Subject
• Precondition: s ∈ S
• Primitive command: destroy subject s
• Postconditions:

– S′ = S – { s }, O′ = O – { s }
– (∀y ∈ O′)[a′[s, y] = ∅], (∀x ∈ S′)[a´[x, s] = ∅]
– (∀x ∈ S′)(∀y ∈ O′) [a′[x, y] = a[x, y]]

Slide #2-23

Destroy Object
• Precondition: o ∈ O
• Primitive command: destroy object o
• Postconditions:

– S′ = S, O′ = O – { o }
– (∀x ∈ S′)[a′[x, o] = ∅]
– (∀x ∈ S′)(∀y ∈ O′) [a′[x, y] = a[x, y]]

Slide #2-24

Creating File
• Process p creates file f with r and w

permission
command create•file(p, f)
create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];
end

Slide #2-25

Confer Right
• Example of a mono-conditional command
• Also, mono-operational command

command confer_r(owner, friend,f)
if own in A[owner, f]

 then enter r into A[friend,f]
end

Slide #2-26

Remove Right
• Example using multiple conditions

• command remove_r(owner,exfriend, f)
if own in A[owner, f] and
 r in A[exfriend, f]
 then delete r from A[exfriend, f]
end

Slide #2-27

Copy Right
• Allows possessor to give rights to another
• Often attached to a right, so only applies to

that right
– r is read right that cannot be copied
– rc is read right that can be copied

• Is copy flag copied when giving r rights?
– Depends on model, instantiation of model

Slide #2-28

Attenuation of Privilege
• Principle says you can’t give rights you do

not possess
– Restricts addition of rights within a system
– Usually ignored for owner

• Why? Owner gives herself rights, gives them to
others, deletes her rights.

Slide #2-29

The Safety Problem
• Given

– initial state
– protection scheme (HRU commands)

• Can r appear in a cell that exists in the initial state
and does not contain r in the initial state?

• More specific question might be:
can r appear in a specific cell A[s,o]

Safety with respect to r

Slide #2-30

Safety of a Specific Access Control
System

• Is it decidable?
• Is it computationally feasible?

• Safety is undecidable in the general HRU
model
– Maps to the Halting problem

Slide #2-31

Safety Results
• Constraints on HRU help some

– Safety for mono-operational systems is
decidable but NP-Complete

– Mono-conditional monotonic HRU is decidable
but not interesting

• Other systems proposed with better results
– Take-Grant model – decidable in linear time

• Still an active research area
– Comparing expressiveness with safety

Slide #2-32

Key Points
• Access control matrix simplest abstraction

mechanism for representing protection state
• Transitions alter protection state
• 6 primitive operations alter matrix

– Transitions can be expressed as commands
composed of these operations and, possibly,
conditions

• Early safety proofs build on this HRU
model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

