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Access Control Matrix and 
Safety Results

CS461/ECE422
Computer Security I, Fall 2009

Based on slides provided by Matt Bishop for use with 
Computer Security: Art and Science
Plus HRU examples from Ravi Sandhu
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Reading
• Chapter 2 – Access Control Matrix
• A little bit from Chapter 3 to talk about 

Safety
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Outline
• Motivation 
• Access Control Matrix Model
• Protection State Transitions 
• HRU Model

– Commands
– Conditional Commands 

• Basic Safety results
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Motivation
• Access Control Matrix (ACM) and related 

concepts provides very basic abstraction
– Map different systems to a common form for 

comparison
– Enables standard proof techniques
– Not directly used in implementation

• Basis for key safety decidability results
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Definitions
• Protection state of system

– Describes current settings, values of system 
relevant to protection

• Access control matrix
– Describes protection state precisely
– Matrix describing rights of subjects
– State transitions change elements of matrix
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Description

objects (entities)

su
bj

ec
ts

s1

s2

…

sn

o1    …   om   s1   …  sn • Subjects S = { s1,…,sn }
• Objects O = { o1,…,om }
• Rights R = { r1,…,rk }

• Entries A[si, oj] ⊆ R
• A[si, oj] = { rx, …, ry } 

means subject si has rights 
rx, …, ry over object oj
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Example 1
• Processes p, q
• Files f, g
• Rights r, w, x, a, o

f          g       p               q
p rwo     r      rwxo        w
q a         ro      r             rwxo
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Example 2
• Procedures inc_ctr, dec_ctr, manage
• Variable counter
• Rights +, –, call

         counter    inc_ctr    dec_ctr     manage
inc_ctr +
dec_ctr –
manage             call          call       call
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Boolean Expression Evaluation
• ACM controls access to database fields

– Subjects have attributes
– Verbs define type of access
– Rules associated with objects, verb pair

• Subject attempts to access object
– Rule for object, verb evaluated, grants or denies 

access
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Example
• Subject annie

– Attributes role (artist), groups (creative)
• Verb paint

– Default 0 (deny unless explicitly granted)
• Object picture

– Rule:
paint: ‘artist’ in subject.role and

‘creative’ in subject.groups and
time.hour ≥ 0 and time.hour < 5
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ACM at 3AM and 10AM

… picture …

…
 a

nn
ie

 …

paint

At 3AM, time condition
met; ACM is:

… picture …

…
 a

nn
ie

 …

At 10AM, time condition
not met; ACM is:
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History
Query-Set overlap limit = 2
Database:
name position age salary
Alice teacher 45 $40,000
Bob aide 20 $20,000
Carol principal 37 $60,000
Dave teacher 50 $50,000
Eve teacher 33 $50,000

Queries:
C1: sum(salary, “position = teacher”) = 140,000
C2: count(set(age < 40 & position = teacher)
C3: sum(salary, “age > 40 & position = teacher”) should not 
be answered (deduce Eve's salary)
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State Transitions
• Change the protection state of system
• |– represents transition

– Xi |– τ Xi+1: command τ moves system from state 
Xi to Xi+1

– Xi |– * Xi+1: a sequence of commands moves 
system from state Xi to Xi+1

• Commands often called transformation 
procedures



Slide #2-14

Example Transitions
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Example Composite Transition
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HRU Model
• Harrison, Ruzzo, and Ullman proved key 

safety results in 1976
• Talked about systems

– With initial protection state expressed in ACM
– State transition commands built from a set of 

primitive operations
– Applied conditionally.
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HRU Commands and Operations
• command α(X1, X2 , . . ., Xk)

if rl in A[Xs1, Xo1] and r2 in A[Xs2, Xo2] and ... rk in 
A[Xsk, Xok]
then
op1; op2; … opn

end
• 6 Primitive Operations

• enter r into A[Xs, Xo]
• delete r from A[Xs, Xo]
• create subject Xs
• create object Xo
• destroy subject Xs
• destroy object Xo
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Create Subject
• Precondition: s ∉ S
• Primitive command: create subject s
• Postconditions:

– S′ = S ∪{ s }, O′ = O ∪{ s }
– (∀y ∈ O′)[a′[s, y] = ∅], (∀x ∈ S′)[a′[x, s] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a′[x, y] = a[x, y]]
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Create Object
• Precondition: o ∉ O
• Primitive command: create object o
• Postconditions:

– S′ = S, O′ = O ∪ { o }
– (∀x ∈ S′)[a′[x, o] = ∅]
– (∀x ∈ S)(∀y ∈ O)[a′[x, y] = a[x, y]]
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Add Right
• Precondition: s ∈ S, o ∈ O
• Primitive command: enter r into a[s, o]
• Postconditions:

– S′ = S, O′ = O
– a′[s, o] = a[s, o] ∪ { r }
– (∀x ∈ S′)(∀y ∈ O′ – { o }) [a′[x, y] = a[x, y]]
– (∀x ∈ S′ – { s })(∀y ∈ O′) [a′[x, y] = a[x, y]]
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Delete Right
• Precondition: s ∈ S, o ∈ O
• Primitive command: delete r from a[s, o]
• Postconditions:

– S′ = S, O′ = O
– a′[s, o] = a[s, o] – { r }
– (∀x ∈ S′)(∀y ∈ O′ – { o }) [a′[x, y] = a[x, y]]
– (∀x ∈ S′ – { s })(∀y ∈ O′) [a′[x, y] = a[x, y]]
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Destroy Subject
• Precondition: s ∈ S
• Primitive command: destroy subject s
• Postconditions:

– S′ = S – { s }, O′ = O – { s }
– (∀y ∈ O′)[a′[s, y] = ∅], (∀x ∈ S′)[a´[x, s] = ∅]
– (∀x ∈ S′)(∀y ∈ O′) [a′[x, y] = a[x, y]]
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Destroy Object
• Precondition: o ∈ O
• Primitive command: destroy object o
• Postconditions:

– S′ = S, O′ = O – { o }
– (∀x ∈ S′)[a′[x, o] = ∅]
– (∀x ∈ S′)(∀y ∈ O′) [a′[x, y] = a[x, y]]



Slide #2-24

Creating File
• Process p creates file f with r and w 

permission
command create•file(p, f)
create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];
end
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Confer Right
• Example of a mono-conditional command
• Also, mono-operational command

command confer_r(owner, friend,f)
if own in A[owner, f] 

  then enter r into A[friend,f]
end
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Remove Right
• Example using multiple conditions

• command remove_r(owner,exfriend, f)
if own in A[owner, f] and
   r in A[exfriend, f]
     then delete r from A[exfriend, f]
end
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Copy Right
• Allows possessor to give rights to another
• Often attached to a right, so only applies to 

that right
– r is read right that cannot be copied
– rc is read right that can be copied

• Is copy flag copied when giving r rights?
– Depends on model, instantiation of model
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Attenuation of Privilege
• Principle says you can’t give rights you do 

not possess
– Restricts addition of rights within a system
– Usually ignored for owner

• Why? Owner gives herself rights, gives them to 
others, deletes her rights.
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The Safety Problem
• Given

– initial state
– protection scheme (HRU commands)

• Can r appear in a cell that exists in the initial state 
and does not contain r in the initial state?

• More specific question might be:
can r appear in a specific cell A[s,o]

Safety with respect to r
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Safety of a Specific Access Control 
System

• Is it decidable?
• Is it computationally feasible?

• Safety is undecidable in the general HRU 
model
– Maps to the Halting problem
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Safety Results
• Constraints on HRU help some

– Safety for mono-operational systems is 
decidable but NP-Complete

– Mono-conditional monotonic HRU is decidable 
but not interesting

• Other systems proposed with better results
– Take-Grant model – decidable in linear time

• Still an active research area
– Comparing expressiveness with safety
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Key Points
• Access control matrix simplest abstraction 

mechanism for representing protection state
• Transitions alter protection state
• 6 primitive operations alter matrix

– Transitions can be expressed as commands 
composed of these operations and, possibly, 
conditions

• Early safety proofs build on this HRU 
model
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