
1

Key Management

CS461/ECE422
Fall 2009

2

Reading

• Handbook of Applied Cryptography
http://www.cacr.math.uwaterloo.ca/hac/
– Section 11.3.2 attack on RSA signature
– Section 13.8.3 Key Escrow

• Chapter 10 in Computer Security: Art and
Science

http://www.cacr.math.uwaterloo.ca/hac/

3

Key Management Motivation

• Cryptographic security depends on keys
– Size
– Generation
– Retrieval and Storage

• Example
– House security system no good if key or code is

under the mat

4

Overview

• Key Generation
• Key Exchange and management

– Classical (symmetric)
– Public/private

• Digital Signatures
• Key Storage

5

Notation

• X → Y : { Z || W } kX,Y

– X sends Y the message produced by concatenating Z
and W encrypted by key kX,Y, which is shared by users X
and Y

• A → T : { Z } kA || { W } kA,T

– A sends T a message consisting of the concatenation of
Z encrypted using kA, A’s key, and W encrypted using
kA,T, the key shared by A and T

• r1, r2 nonces (nonrepeating random numbers)

6

Session and Interchange Keys
• Long lived Interchange Keys only exist to boot strap
• Short lived session keys used for bulk encryption

Kb,Ka
Ka,Kb

{Ka,b}Ka
{m1}Ka,b

Ka,b
Ka,b

7

Session and Interchange Keys
• Alice wants to send a message m to Bob

– Assume public key encryption
– Alice generates a random cryptographic key ks and uses

it to encrypt m
• To be used for this message only
• Called a session key

– She encrypts ks with Bob’s public key kB

• kB encrypts all session keys Alice uses to communicate with
Bob

• Called an interchange key
– Alice sends { m } ks ||{ ks } kB

8

Benefits

• Limits amount of traffic encrypt with single key
– Standard practice, to decrease the amount of traffic an

attacker can obtain
• Prevents some attacks

– Example: Alice will send Bob message that is either
“BUY” or “SELL”. Eve computes possible ciphertexts
{ “BUY” } kB and { “SELL” } kB. Eve intercepts
encrypted message, compares, and gets plaintext at
once

9

Key Generation

• Goal: generate keys that are difficult to guess
• Problem statement: given a set of K potential keys,

choose one randomly
– Equivalent to selecting a random number between 0 and

K–1 inclusive
• Why is this hard: generating random numbers

– Actually, numbers are usually pseudo-random, that is,
generated by an algorithm

10

What is “Random”?

• Sequence of cryptographically random numbers: a
sequence of numbers n1, n2, … such that for any
integer k > 0, an observer cannot predict nk even if
all of n1, …, nk–1 are known
– Best: physical source of randomness

• Random pulses
• Electromagnetic phenomena
• Characteristics of computing environment such as disk latency
• Ambient background noise

11

What is “Pseudorandom”?

• Sequence of cryptographically pseudorandom
numbers: sequence of numbers intended to
simulate a sequence of cryptographically random
numbers but generated by an algorithm
– Very difficult to do this well

• Linear congruential generators [nk = (ank–1 + b) mod n] broken
• Polynomial congruential generators [nk = (ajnk–1

j + … + a1nk–1
a0) mod n] broken too

• Here, “broken” means next number in sequence can be
determined

12

Best Pseudorandom Numbers

• Strong mixing function: function of 2 or more
inputs with each bit of output depending on some
nonlinear function of all input bits
– Examples: DES, MD5, SHA-1, avalanche effect
– Use on UNIX-based systems:

(date; ps gaux) | md5
where “ps gaux” lists all information about all
processes on system

13

Separate Channel

• Ideally you have separate secure channel for
exchanging keys
– Direct secret sharing grows at N2

Telephone, separate data network, ESP, sneaker net

Regular data network

14

Key Exchange Algorithms

• Goal: Alice, Bob get shared key
– All cryptosystems, protocols publicly known

• Only secret data is the keys
– Anything transmitted is assumed known to attacker

• Key cannot be sent in clear as attacker can listen in
– Options

• Key can be sent encrypted, or derived from exchanged data
plus data not known to an eavesdropper (Diffie-Hellman)

• Alice, Bob may trust third party

15

Shared Channel: Trusted Third
Party

• Generally separate channel is not practical
– No trustworthy separate channel
– Want to scale linearly with additional users

Regular data network
Key Exchange

KA,KB, … KZ

KA

KB

16

Classical Key Exchange

• Bootstrap problem: how do Alice, Bob
begin?
– Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
– Alice and Cathy share secret key kA

– Bob and Cathy share secret key kB

• Use this to exchange shared key ks

17

Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB

Eve Bob
{ ks } kB

18

Problems

• How does Bob know he is talking to Alice?
– Replay attack: Eve records message from Alice

to Bob, later replays it; Bob may think he’s
talking to Alice, but he isn’t

– Session key reuse: Eve replays message from
Alice to Bob, so Bob re-uses session key

• Protocols must provide authentication and
defense against replay

19

Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

AuRP

Au

Au + RP

20

Argument: Alice talking to Bob

• Second message
– Encrypted using key only she, Cathy knows

• So Cathy encrypted it
– Response to first message

• As r1 in it matches r1 in first message

• Third message
– Alice knows only Bob can read it

• As only Bob can derive session key from message
– Any messages encrypted with that key are from Bob

21

Argument: Bob talking to Alice

• Third message
– Encrypted using key only he, Cathy know

• So Cathy encrypted it
– Names Alice, session key

• Cathy provided session key, says Alice is other party

• Fourth message
– Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decrypt r2 and so can’t respond, or responds

incorrectly

22

Denning-Sacco Modification
• Needham-Schroeder Assumption: all keys are secret
• Question: suppose Eve can obtain session key. How does

that affect protocol?
– In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks

23

Solution

• In protocol above, Eve impersonates Alice
• Problem: replay in third step

– First in previous slide
• Solution: use time stamp T to detect replay
• Weakness: if clocks not synchronized, may either

reject valid messages or accept replays
– Parties with either slow or fast clocks vulnerable to

replay

24

Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

25

Otway-Rees Protocol

• Corrects problem
– That is, Eve replaying the third message in the

protocol
• Does not use timestamps

– Not vulnerable to the problems that Denning-
Sacco modification has

26

The Protocol

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bobn || Alice || Bob || { r1 || n || Alice || Bob } kA ||
{ r2 || n || Alice || Bob } kB

Cathy Bobn || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA

27

Argument: Alice talking to Bob

• Fourth message
– If n matches first message, Alice knows it is

part of this protocol exchange
– Cathy generated ks because only she, Alice

know kA

– Encrypted part belongs to exchange as r1
matches r1 in encrypted part of first message

28

Argument: Bob talking to Alice

• Third message
– If n matches second message, Bob knows it is

part of this protocol exchange
– Cathy generated ks because only she, Bob know

kB

– Encrypted part belongs to exchange as r2
matches r2 in encrypted part of second message

29

Replay Attack

• Eve acquires old ks, message in third step
– n || { r1 || ks } kA || { r2 || ks } kB

• Eve forwards appropriate part to Alice
– Nonce r1 matches nothing, so is rejected

30

Network Authentication with
Kerberos

U
ser U

W
orkstation

Login Service S

AS/
Cathy

TGS/
Barnum

KDC

TGT, TGS

Ticket, S

Service Request (Authenticator, Ticket)

Legend: AS = Authentication Server; TGS = Ticket Granting Server
 KDC = Key Distribution Center; TGT = Ticket Granting Ticket;

31

Kerberos
• Authentication system

– Based on Needham-Schroeder with Denning-Sacco modification
– Central server plays role of trusted third party (“Cathy”)

• Ticket
– Issuer vouches for identity of requester of service

• Authenticator
– Identifies sender

• Two Competing Versions: 4 and 5
– Version 4 discussed here

32

Idea

• User u authenticates to Kerberos AS
– Obtains ticket (TGT) Tu,TGS for ticket granting service

(TGS)
• User u wants to use service s:

– User sends authenticator Au, ticket Tu,TGS to TGS asking
for ticket for service

– TGS sends ticket Tu,s to user
– User sends Au, Tu,s to server as request to use s

• Details follow

33

Ticket
• Credential saying issuer has identified ticket

requester
• Example ticket issued to user u for TGS

Tu,TGS = TGS || { u || u’s address || valid time || ku,TGS } kAS,TGS

where:
– ku,TGS is session key for user and TGS
– kAS,TGS is long-term key shared between AS and TGS
– Valid time is interval for which ticket valid; e.g., a day
– u’s address may be IP address or something else

• Note: more fields, but not relevant here

34

Ticket

• Example ticket issued to user u for service s
Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:
– ku,s is session key for user and service
– ks is long-term key shared between TGS and S
– Valid time is interval for which ticket valid; e.g., hours/

days
– u’s address may be IP address or something else

• Note: more fields, but not relevant here

35

Authenticator

• Credential containing identity of sender of ticket
– Used to confirm sender is entity to which ticket was

issued
• Example: authenticator user u generates for

service s
Au,s = { u || generation time} ku,s

where:
– Generation time is when authenticator generated

• Note: more fields, not relevant here

36

Protocol

M1: user/ws AS
[AS_REQ]: user || TGS

M2: user/ws AS[AS_REP]: { ku,TGS } ku || Tu,TGS

* Initially, user u registers with KDC and establishes a password
- used to derive long-term key ku

* User U logs into workstation (WS) using password

* WS decrypts session key ku,TGS using supplied password

37

Protocol

M3: user/ws TGS
[TGS_REQ]: service || Au,TGS || Tu,TGS

M4: user/ws TGS
[TGS_REP]: user || { ku,s } ku,TGS || Tu,s

M5: user/ws service
[AP_REQ]: Au,s || Tu,s

M6: user/ws service
[AP_REP]: { t + 1 } ku,s

* TGS decrypts ticket using long-term key kAS,TGS

* Service decrypts ticket using long-term key kTGS,s

38

Summary of Messages

• First two messages get user ticket to use TGS
– User u can obtain session key only if u knows key

shared with AS
• Next four messages show how u gets and uses

ticket for service s
– Service s validates request by checking sender (using

Au,s) is same as entity ticket issued to
– Step 6 optional; used when u requests confirmation

39

Problems

• Relies on synchronized clocks
– Typical clock skew allowed is 5 minutes
– If not synchronized and old tickets,

authenticators not cached, replay is possible
• Tickets have some fixed fields

– Dictionary attacks possible
– Kerberos 4 session keys weak (had much less

than 56 bits of randomness); researchers at
Purdue found them from tickets in minutes

40

Public Key Key Exchange

• Here interchange keys known
– eA, eB Alice and Bob’s public keys known to all
– dA, dB Alice and Bob’s private keys known only to

owner
• Simple protocol

– ks is desired session key

Alice Bob
{ ks } eB

41

Problem and Solution

• Vulnerable to forgery or replay
– Because eB known to anyone, Bob has no assurance that

Alice sent message
• Simple fix uses Alice’s private key

– ks is desired session key

Alice Bob
{ { ks } dA } eB

42

Notes

• Can include message enciphered with ks

• Assumes Bob has Alice’s public key, and vice
versa
– If not, each must get it from public server
– If keys not bound to identity of owner, attacker Eve can

launch a man-in-the-middle attack (next slide; Cathy is
public server providing public keys)

• Solution to this (binding identity to keys) discussed later as
public key infrastructure (PKI)

43

Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts
request

Eve intercepts message

44

Cryptographic Key Infrastructure

• Goal: bind identity to key
• Classical: not possible as all keys are shared

– Use protocols to agree on a shared key (see earlier)
• Public key: bind identity to public key

– Crucial as people will use key to communicate with
principal whose identity is bound to key

– Erroneous binding means no secrecy between
principals

– Assume principal identified by an acceptable name

45

Certificates
• Create token (message) containing

– Identity of principal (here, Alice)
– Corresponding public key
– Timestamp (when issued)
– Other information (perhaps identity of signer)
– Compute hash (message digest) of token

Hash encrypted by trusted authority (here, Cathy)
using private key: called a “signature”

CA = eA || Alice || T || {h(eA || Alice || T)} dC

46

Use
• Bob gets Alice’s certificate

– If he knows Cathy’s public key, he can validate the certificate
• Decrypt encrypted hash using Cathy’s public key
• Re-compute hash from certificate and compare
• Check validity
• Is the principal Alice?

– Now Bob has Alice’s public key
• Problem: Bob needs Cathy’s public key to validate

certificate
– That is, secure distribution of public keys
– Solution: Public Key Infrastructure (PKI) using trust anchors

called Certificate Authorities (CAs) that issue certificates

47

PKI Trust Models
• A Single Global CA

– Unmanageable, inflexible
– There is no universally

trusted organization

• Hierarchical CAs (Tree)

– Offloads burden on multiple CAs
– Need to verify a chain of

certificates
– Still depends on a single trusted

root CA

Root CA

Level I CA Level I CA

Level n CA

User

…

48

PKI Trust Models
• Hierarchical CAs with cross-certification

– Multiple root CAs that are cross-certified
– Cross-certification at lower levels for efficiency

• Web Model
– Browsers come pre-configured with multiple trust

anchor certificates
– New certificates can be added

• Distributed (e.g., PGP)
– No CA; instead, users certify each other to build a “web

of trust”

49

X.509 Certificates

• Some certificate components in X.509v3:
– Version
– Serial number
– Signature algorithm identifier: hash algorithm
– Issuer’s name; uniquely identifies issuer
– Interval of validity
– Subject’s name; uniquely identifies subject
– Subject’s public key
– Signature: encrypted hash

50

Validation and Cross-Certifying
• Alice’s CA is Cathy; Bob’s CA is Don; how can Alice validate Bob’s

certificate?
– Have Cathy and Don cross-certify
– Each issues certificate for the other

• Certificates:
– Cathy<<Alice>>
– Dan<<Bob>
– Cathy<<Dan>>
– Dan<<Cathy>>

• Alice validates Bob’s certificate
– Alice obtains Cathy<<Dan>>
– Alice uses (known) public key of Cathy to validate Cathy<<Dan>>
– Alice uses Cathy<<Dan>> to validate Dan<<Bob>>

51

PGP Chains
• OpenPGP certificates structured into packets

– One public key packet
– Zero or more signature packets

• Public key packet:
– Version (3 or 4; 3 compatible with all versions of PGP,

4 not compatible with older versions of PGP)
– Creation time
– Validity period (not present in version 3)
– Public key algorithm, associated parameters
– Public key

52

OpenPGP Signature Packet
• Version 3 signature packet

– Version (3)
– Signature type (level of trust)
– Creation time (when next fields hashed)
– Signer’s key identifier (identifies key to encrypt hash)
– Public key algorithm (used to encrypt hash)
– Hash algorithm
– Part of signed hash (used for quick check)
– Signature (encrypted hash)

• Version 4 packet more complex

53

Signing

• Single certificate may have multiple signatures
• Notion of “trust” embedded in each signature

– Range from “untrusted” to “ultimate trust”
– Signer defines meaning of trust level (no standards!)

• All version 4 keys signed by subject
– Called “self-signing”

54

Validating Certificates
• Alice needs to validate

Bob’s OpenPGP cert
– Does not know Fred,

Giselle, or Ellen
• Alice gets Giselle’s cert

– Knows Henry slightly, but
his signature is at “casual”
level of trust

• Alice gets Ellen’s cert
– Knows Jack, so uses his

cert to validate Ellen’s, then
hers to validate Bob’s Bob

Fred

Giselle

Ellen
Irene

Henry

Jack

Arrows show signatures
Self signatures not shown

55

Key Revocation
• Certificates invalidated before expiration

– Usually due to compromised key
– May be due to change in circumstance (e.g., someone

leaving company)
• Problems

– Verify that entity revoking certificate authorized to do
so

– Revocation information circulates to everyone fast
enough

• Network delays, infrastructure problems may delay
information

56

CRLs
• Certificate revocation list lists certificates that are

revoked
• X.509: only certificate issuer can revoke

certificate
– Added to CRL

• PGP: signers can revoke signatures; owners can
revoke certificates, or allow others to do so
– Revocation message placed in PGP packet and signed
– Flag marks it as revocation message

57

Digital Signature
• Construct that authenticated origin, contents of

message in a manner provable to a disinterested
third party (“judge”)

• Sender cannot deny having sent message (service
is “nonrepudiation”)
– Limited to technical proofs

• Inability to deny one’s cryptographic key was used to sign
– One could claim the cryptographic key was stolen or

compromised
• Legal proofs, etc., probably required; not dealt with here

58

Simple Approach

• Classical: Alice, Bob share key k
– Alice sends m || { m } k to Bob

This is a digital signature
WRONGWRONG

This is not a digital signature
– Why? Third party cannot determine whether

Alice or Bob generated message

59

Classical Digital Signatures
• Require trusted third party

– Alice, Bob each share keys with trusted party Cathy
• To resolve dispute, judge gets { m } kAlice, { m } kBob, and

has Cathy decipher them; if messages matched, contract
was signed

Alice Bob

Cathy Bob

Cathy Bob

{ m }kAlice

{ m }kAlice

{ m }kBob

60

Public Key Digital Signatures

• Alice’s keys are dAlice, eAlice

• Alice sends Bob
m || { m } dAlice

• In case of dispute, judge computes
{ { m } dAlice } eAlice

• and if it is m, Alice signed message
– She’s the only one who knows dAlice!

61

RSA Digital Signatures

• Use private key to encrypt message
– Protocol for use is critical

• Key points:
– Never sign random documents, and when

signing, always sign hash and never document
• Mathematical properties can be turned against

signer
– Sign message first, then encrypt

• Changing public keys causes forgery

62

Attack #1

• m1 x m2 mod nb = m
• Get Bob to sign m1 and m2

• m1
d mod nb x m2

d mod nb =
• (m1

d x m2
d) mod nb =

• (m1 x m2
)d mod nb = md mod nb

63

Attack #1 example
• Example: Alice, Bob communicating

– nA = 95, eA = 59, dA = 11
– nB = 77, eB = 53, dB = 17

• 26 contracts, numbered 00 to 25
– Alice has Bob sign 05 and 17:

• c = mdB mod nB = 0517 mod 77 = 3
• c = mdB mod nB = 1717 mod 77 = 19

– Alice computes 05×17 mod 77 = 08; corresponding
signature is 03×19 mod 77 = 57; claims Bob signed 08

– Judge computes ceB mod nB = 5753 mod 77 = 08
• Signature validated; Bob is toast

64

Attack #2: Bob’s Revenge
• Bob, Alice agree to sign contract m but wants it to

appear that she signed contract M
– Alice encrypts, then signs:

(meB mod nB)dA mod nA

• Bob now changes his public key
– Computes r such that Mr mod nB = m
– Replace public key e'B with reB and computes a new matching

private key d'B
• Bob claims contract was M. Judge computes:

– (ceA mod nA)d'B mod nB = M

65

Attack #2 Example
• Bob, Alice agree to sign contract 06
• Alice encrypts, then signs:

(meB mod 77)dA mod nA = (0653 mod 77)11 mod 95 = 63
• Bob now changes his public key

– Computes r such that 13r mod 77 = 6; say, r = 59
– Computes reB mod φ(nB) = 59×53 mod 60 = 7
– Replace public key eB with 7, private key dB = 43

• Bob claims contract was 13. Judge computes:
– (6359 mod 95)43 mod 77 = 13
– Verified; now Alice is toast

66

El Gamal Digital Signature
• Relies on discrete log problem
• Choose p prime, g, d < p; compute y = gd mod p
• Public key: (y, g, p); private key: d
• To sign contract m:

– Choose k relatively prime to p–1, and not yet used
– Compute a = gk mod p
– Find b such that m = (da + kb) mod p–1
– Signature is (a, b)

• To validate, check that
– yaab mod p = gm mod p

67

Example
• Alice chooses p = 29, g = 3, d = 6

y = 36 mod 29 = 4
• Alice wants to send Bob signed contract 23

– Chooses k = 5 (relatively prime to 28)
– This gives a = gk mod p = 35 mod 29 = 11
– Then solving 23 = (6×11 + 5b) mod 28 gives b = 25
– Alice sends message 23 and signature (11, 25)

• Bob verifies signature: gm mod p = 323 mod 29 = 8
and yaab mod p = 4111125 mod 29 = 8
– They match, so Alice signed

68

Attack

• Eve learns k, corresponding message m, and
signature (a, b)
– Extended Euclidean Algorithm gives d, the

private key
• Example from above: Eve learned Alice

signed last message with k = 5
m = (da + kb) mod p–1 = (11d + 5×25)

mod 28
so Alice’s private key is d = 6

69

Storing Keys

• Multi-user or networked systems: attackers may
defeat access control mechanisms
– Encrypt file containing key

• Attacker can monitor keystrokes to decrypt files
• Key will be resident in memory that attacker may be able to

read
– Use physical devices like “smart card”

• Key never enters system
• Card can be stolen, so have 2 devices combine bits to make

single key

70

Key Escrow
• Key escrow system allows authorized third party to

recover key
– Useful when keys belong to roles, such as system

operator, rather than individuals
– Business: recovery of backup keys
– Law enforcement: recovery of keys that authorized

parties require access to
• Goal: provide this without weakening

cryptosystem
• Very controversial

71

Desirable Properties
• Escrow system should not depend on encryption

algorithm
• Privacy protection mechanisms must work from

end to end and be part of user interface
• Requirements must map to key exchange protocol
• System supporting key escrow must require all

parties to authenticate themselves
• If message to be observable for limited time, key

escrow system must ensure keys valid for that
period of time only

Beth, Knobloch, Otten, Simmons, Wichmann 94

72

Components

• User security component
– Does the encryption, decryption
– Supports the key escrow component

• Key escrow component
– Manages storage, use of data recovery keys

• Data recovery component
– Does key recovery

73

Example: EES, Clipper Chip
• Escrow Encryption Standard

– Set of interlocking components
– Designed to balance need for law enforcement access to

enciphered traffic with citizens’ right to privacy

• Clipper chip given to users prepares per-message
escrow information
– Each chip numbered uniquely by UID
– Special facility programs chip

• Key Escrow Decrypt Processor (KEDP)
– Available to agencies authorized to read messages

• Details in Handbook of Applied Cryptography
– http://www.cacr.math.uwaterloo.ca/hac/about/chap13.pdf

NIST 94

http://www.cacr.math.uwaterloo.ca/hac/about/chap13.pdf

74

Initialization of User Security
Component

Escrow
Agent I

Escrow
Agent II

Secure FacilitySeed1, Key1, Fam1

Seed2, Key2, Fam2

User
“Clipper”

Chip

•Combine Fam1, Fam2

 to obtain kfamily

•Combine Key1,Key2
 to obtain kcomp

•Combine Seed1, Seed2

to generate sequence
kunique = ku1 ⊕ ku2

UID, kunique,
kfamily

{ku2}kcomp

{ku1}kcomp

75

User Security Component

• Unique device key kunique

• Non-unique family key kfamily

• Cipher is Skipjack
– Classical cipher: 80 bit key, 64 bit input, output blocks

• Generates Law Enforcement Access Field (LEAF)
of 128 bits:
– { UID || { ksession } kunique || hash } kfamily

– hash: 16 bit authenticator from session key and
initialization vector

76

Obtaining Access

• Alice obtains legal authorization to read message
• She runs message LEAF through KEDP

– LEAF is { UID || { ksession } kunique || hash } kfamily

• KEDP uses (known) kfamily to validate LEAF,
obtain sending device’s UID

• Authorization, LEAF taken to escrow agencies

77

Agencies’ Role
• Each validates authorization
• Each supplies { kui } kcomp, corresponding key

number
• KEDP takes these and LEAF:{ UID || { ksession }

kunique || hash } kfamily

– Key numbers produce kcomp

– kcomp produces ku1 and ku2

– ku1 and ku2 produce kunique

– kunique and LEAF produce ksession

78

Problems

• hash too short
– LEAF 128 bits, so given a hash:

• 2112 LEAFs show this as a valid hash
• 1 has actual session key, UID
• Takes about 42 minutes to generate a LEAF with a

valid hash but meaningless session key and UID
– Turns out deployed devices would prevent this attack

– Scheme does not meet temporal requirement
• As kunique fixed for each unit, once message is read,

any future messages can be read

79

Yaksha Security System

• Key escrow system meeting all 5 criteria
• Based on RSA, central server

– Central server (Yaksha server) generates session key
• Each user has 2 private keys

– Alice’s modulus nA, public key eA

– First private key dAA known only to Alice
– Second private key dAY known only to Yaksha central

server
– dAA dAY = dA mod Φ(nA)

Ganesan 96

80

Alice and Bob

• Alice wants to send message to Bob
– Alice asks Yaksha server for session key
– Yaksha server generates ksession

– Yaksha server sends Alice the key as:
CA = (ksession)dAYeA mod nA

– Alice computes
(CA)dAA mod nA = ksession

81

Analysis

• Authority can read only one message per
escrowed key
– Meets requirement 5 (temporal one), because

“time” interpreted as “session”
• Independent of message enciphering key

– Meets requirement 1
– Interchange algorithm, keys fixed

• Others met by supporting infrastructure

82

Alternate Approaches
• Tie to time

– Session key not given as escrow key, but related key is
– To derive session key, must solve instance of discrete

log problem
• Tie to probability

– Oblivious transfer: message received with specified
probability

– Idea: translucent cryptography allows fraction f of
messages to be read by third party

– Not key escrow, but similar in spirit

83

Key Points
• Key management critical to effective use of cryptosystems

– Different levels of keys (session vs. interchange)
• Exchange algorithms can be vulnerable to attacks

– Replay
– Identity integrity

• Digital signatures provide integrity of origin and content
Much easier with public key cryptosystems than with classical

cryptosystems
• Keys need infrastructure to identify holders, allow

revoking and possible escrow

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

