
1

Key Management

CS461/ECE422
Fall 2009



2

Reading

• Handbook of Applied Cryptography 
http://www.cacr.math.uwaterloo.ca/hac/
– Section 11.3.2 attack on RSA signature
– Section 13.8.3 Key Escrow

• Chapter 10 in Computer Security: Art and 
Science

http://www.cacr.math.uwaterloo.ca/hac/
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Key Management Motivation

• Cryptographic security depends on keys
– Size
– Generation
– Retrieval and Storage

• Example
– House security system no good if key or code is 

under the mat
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Overview

• Key Generation
• Key Exchange and management

– Classical (symmetric)
– Public/private

• Digital Signatures
• Key Storage
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Notation

• X → Y : { Z || W } kX,Y

– X sends Y the message produced by concatenating Z 
and W encrypted by key kX,Y, which is shared by users X 
and Y

• A → T : { Z } kA || { W } kA,T

– A sends T a message consisting of the concatenation of 
Z encrypted using kA, A’s key, and W encrypted using 
kA,T, the key shared by A and T

• r1, r2 nonces (nonrepeating random numbers)
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Session and Interchange Keys
• Long lived Interchange Keys only exist to boot strap
• Short lived session keys used for bulk encryption

Kb,Ka
Ka,Kb

{Ka,b}Ka
{m1}Ka,b

Ka,b
Ka,b
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Session and Interchange Keys
• Alice wants to send a message m to Bob

– Assume public key encryption
– Alice generates a random cryptographic key ks and uses 

it to encrypt m
• To be used for this message only
• Called a session key

– She encrypts ks with Bob’s public key kB

• kB encrypts all session keys Alice uses to communicate with 
Bob

• Called an interchange key
– Alice sends { m } ks ||{ ks } kB
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Benefits

• Limits amount of traffic encrypt with single key
– Standard practice, to decrease the amount of traffic an 

attacker can obtain
• Prevents some attacks

– Example: Alice will send Bob message that is either 
“BUY” or “SELL”. Eve computes possible ciphertexts 
{ “BUY” } kB and  { “SELL” } kB. Eve intercepts 
encrypted message, compares, and gets plaintext at 
once
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Key Generation

• Goal: generate keys that are difficult to guess
• Problem statement: given a set of K potential keys, 

choose one randomly
– Equivalent to selecting a random number between 0 and 

K–1 inclusive
• Why is this hard: generating random numbers

– Actually, numbers are usually pseudo-random, that is, 
generated by an algorithm
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What is “Random”?

• Sequence of cryptographically random numbers: a 
sequence of numbers n1, n2, … such that for any 
integer k > 0, an observer cannot predict nk even if 
all of n1, …, nk–1 are known
– Best: physical source of randomness

• Random pulses
• Electromagnetic phenomena
• Characteristics of computing environment such as disk latency
• Ambient background noise
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What is “Pseudorandom”?

• Sequence of cryptographically pseudorandom 
numbers: sequence of numbers intended to 
simulate a sequence of cryptographically random 
numbers but generated by an algorithm
– Very difficult to do this well

• Linear congruential generators [nk = (ank–1 + b) mod n] broken
• Polynomial congruential generators [nk = (ajnk–1

j + … + a1nk–1 
a0) mod n] broken too

• Here, “broken” means next number in sequence can be 
determined
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Best Pseudorandom Numbers

• Strong mixing function: function of 2 or more 
inputs with each bit of output depending on some 
nonlinear function of all input bits
– Examples: DES, MD5, SHA-1, avalanche effect
– Use on UNIX-based systems:

(date; ps gaux) | md5
where “ps gaux” lists all information about all 
processes on system
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Separate Channel

• Ideally you have separate secure channel for 
exchanging keys
– Direct secret sharing grows at N2

Telephone, separate data network, ESP, sneaker net

Regular data network
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Key Exchange Algorithms

• Goal: Alice, Bob get shared key
– All cryptosystems, protocols publicly known

• Only secret data is the keys
– Anything transmitted is assumed known to attacker

• Key cannot be sent in clear as attacker can listen in
– Options

• Key can be sent encrypted, or derived from exchanged data 
plus data not known to an eavesdropper (Diffie-Hellman)

• Alice, Bob may trust third party
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Shared Channel: Trusted Third 
Party

• Generally separate channel is not practical
– No trustworthy separate channel
– Want to scale linearly with additional users

Regular data network
Key Exchange

KA,KB, … KZ

KA

KB



16

Classical Key Exchange

• Bootstrap problem: how do Alice, Bob 
begin?
– Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
– Alice and Cathy share secret key kA

– Bob and Cathy share secret key kB

• Use this to exchange shared key ks
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Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB

Eve Bob
{ ks } kB
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Problems

• How does Bob know he is talking to Alice?
– Replay attack: Eve records message from Alice 

to Bob, later replays it; Bob may think he’s 
talking to Alice, but he isn’t

– Session key reuse: Eve replays message from 
Alice to Bob, so Bob re-uses session key

• Protocols must provide authentication and 
defense against replay



19

Needham-Schroeder

Alice Cathy
Alice || Bob || r1 

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB }  kA

Alice Bob
{ Alice || ks }  kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

AuRP

Au

Au + RP
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Argument: Alice talking to Bob

• Second message
– Encrypted using key only she, Cathy knows

• So Cathy encrypted it
– Response to first message

• As r1 in it matches r1 in first message

• Third message
– Alice knows only Bob can read it

• As only Bob can derive session key from message
– Any messages encrypted with that key are from Bob
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Argument: Bob talking to Alice

• Third message
– Encrypted using key only he, Cathy know

• So Cathy encrypted it
– Names Alice, session key

• Cathy provided session key, says Alice is other party

• Fourth message
– Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decrypt r2 and so can’t respond, or responds 

incorrectly
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Denning-Sacco Modification
• Needham-Schroeder Assumption: all keys are secret
• Question: suppose Eve can obtain session key. How does 

that affect protocol?
– In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB 

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks
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Solution

• In protocol above, Eve impersonates Alice
• Problem: replay in third step

– First in previous slide
• Solution: use time stamp T to detect replay
• Weakness: if clocks not synchronized, may either 

reject valid messages or accept replays
– Parties with either slow or fast clocks vulnerable to 

replay
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Needham-Schroeder with 
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1 

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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Otway-Rees Protocol

• Corrects problem
– That is, Eve replaying the third message in the 

protocol
• Does not use timestamps

– Not vulnerable to the problems that Denning-
Sacco modification has
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The Protocol

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA 

Cathy Bobn || Alice || Bob || { r1 || n || Alice || Bob } kA ||
{ r2 || n || Alice || Bob } kB

Cathy Bobn || { r1 || ks } kA || { r2 || ks } kB 

Alice Bob
n || { r1 || ks } kA 
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Argument: Alice talking to Bob

• Fourth message
– If n matches first message, Alice knows it is 

part of this protocol exchange
– Cathy generated ks because only she, Alice 

know kA

– Encrypted part belongs to exchange as r1 
matches r1 in encrypted part of first message
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Argument: Bob talking to Alice

• Third message
– If n matches second message, Bob knows it is 

part of this protocol exchange
– Cathy generated ks because only she, Bob know 

kB

– Encrypted part belongs to exchange as r2 
matches r2 in encrypted part of second message
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Replay Attack

• Eve acquires old ks, message in third step
– n || { r1 || ks } kA || { r2 || ks } kB

• Eve forwards appropriate part to Alice
– Nonce r1  matches nothing, so is rejected
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Network Authentication with 
Kerberos

U
ser U

W
orkstation

Login Service S

AS/
Cathy

TGS/
Barnum

KDC

TGT, TGS

Ticket, S 

Service Request (Authenticator, Ticket)

Legend:  AS = Authentication Server; TGS = Ticket Granting Server
               KDC = Key Distribution Center; TGT = Ticket Granting Ticket;



31

Kerberos
• Authentication system

– Based on Needham-Schroeder with Denning-Sacco modification
– Central server plays role of trusted third party (“Cathy”)

• Ticket
– Issuer vouches for identity of requester of service

• Authenticator
– Identifies sender

• Two Competing Versions: 4 and 5
– Version 4 discussed here
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Idea

• User u authenticates to Kerberos AS
– Obtains ticket (TGT) Tu,TGS for ticket granting service 

(TGS)
• User u wants to use service s:

– User sends authenticator Au, ticket Tu,TGS to TGS asking 
for ticket for service

– TGS sends ticket Tu,s to user
– User sends Au, Tu,s to server as request to use s

• Details follow
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Ticket
• Credential saying issuer has identified ticket 

requester
• Example ticket issued to user u for TGS

Tu,TGS = TGS || { u || u’s address || valid time || ku,TGS } kAS,TGS

where:
– ku,TGS is session key for user and TGS
– kAS,TGS is long-term key shared between AS and TGS
– Valid time is interval for which ticket valid; e.g., a day
– u’s address may be IP address or something else

• Note: more fields, but not relevant here
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Ticket

• Example ticket issued to user u for service s
Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:
– ku,s is session key for user and service
– ks is long-term key shared between TGS and S
– Valid time is interval for which ticket valid; e.g., hours/

days
– u’s address may be IP address or something else

• Note: more fields, but not relevant here
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Authenticator

• Credential containing identity of sender of ticket
– Used to confirm sender is entity to which ticket was 

issued
• Example: authenticator user u generates for 

service s
Au,s = { u || generation time} ku,s

where:
– Generation time is when authenticator generated

• Note: more fields, not relevant here
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Protocol

M1: user/ws AS
[AS_REQ]: user ||  TGS

M2: user/ws AS[AS_REP]: { ku,TGS } ku ||  Tu,TGS

* Initially, user u registers with KDC and establishes a password
- used to derive long-term key ku

* User U logs into workstation (WS) using password

* WS decrypts session key ku,TGS using supplied password
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Protocol

M3: user/ws TGS
[TGS_REQ]: service || Au,TGS ||  Tu,TGS

M4: user/ws TGS
[TGS_REP]: user || { ku,s } ku,TGS ||  Tu,s

M5: user/ws service
[AP_REQ]: Au,s || Tu,s 

M6: user/ws service
[AP_REP]: { t + 1 } ku,s

* TGS decrypts ticket using long-term key kAS,TGS

* Service decrypts ticket using long-term key kTGS,s
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Summary of Messages

• First two messages get user ticket to use TGS
– User u can obtain session key only if u knows key 

shared with AS
• Next four messages show how u gets and uses 

ticket for service s
– Service s validates request by checking sender (using 

Au,s) is same as entity ticket issued to
– Step 6 optional; used when u requests confirmation
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Problems

• Relies on synchronized clocks
– Typical clock skew allowed is 5 minutes
– If not synchronized and old tickets, 

authenticators not cached, replay is possible
• Tickets have some fixed fields

– Dictionary attacks possible
– Kerberos 4 session keys weak (had much less 

than 56 bits of randomness); researchers at 
Purdue found them from tickets in minutes
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Public Key Key Exchange

• Here interchange keys known
– eA, eB Alice and Bob’s public keys known to all
– dA, dB Alice and Bob’s private keys known only to 

owner
• Simple protocol

– ks is desired session key

Alice Bob
{ ks } eB
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Problem and Solution

• Vulnerable to forgery or replay
– Because eB known to anyone, Bob has no assurance that 

Alice sent message
• Simple fix uses Alice’s private key

– ks is desired session key

Alice Bob
{ { ks } dA } eB
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Notes

• Can include message enciphered with ks

• Assumes Bob has Alice’s public key, and vice 
versa
– If not, each must get it from public server
– If keys not bound to identity of owner, attacker Eve can 

launch a man-in-the-middle attack (next slide; Cathy is 
public server providing public keys)

• Solution to this (binding identity to keys) discussed later as 
public key infrastructure (PKI)
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Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts 
request

Eve intercepts message
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Cryptographic Key Infrastructure

• Goal: bind identity to key
• Classical: not possible as all keys are shared

– Use protocols to agree on a shared key (see earlier)
• Public key: bind identity to public key

– Crucial as people will use key to communicate with 
principal whose identity is bound to key

– Erroneous binding means no secrecy between 
principals

– Assume principal identified by an acceptable name
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Certificates
• Create token (message) containing

– Identity of principal (here, Alice)
– Corresponding public key
– Timestamp (when issued)
– Other information (perhaps identity of signer)
– Compute hash (message digest) of token

Hash encrypted by trusted authority (here, Cathy) 
using private key: called a “signature”

CA = eA || Alice || T || {h(eA || Alice || T )} dC
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Use
• Bob gets Alice’s certificate

– If he knows Cathy’s public key, he can validate the certificate
• Decrypt encrypted hash using Cathy’s public key
• Re-compute hash from certificate and compare
• Check validity
• Is the principal Alice?

– Now Bob has Alice’s public key
• Problem: Bob needs Cathy’s public key to validate 

certificate
– That is, secure distribution of public keys
– Solution: Public Key Infrastructure (PKI) using trust anchors 

called Certificate Authorities (CAs) that issue certificates
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PKI Trust Models
• A Single Global CA

– Unmanageable, inflexible
– There is no universally 

trusted organization

• Hierarchical CAs (Tree)

– Offloads burden on multiple CAs
– Need to verify a chain of 

certificates
– Still depends on a single trusted 

root CA

Root CA

Level I CA Level I CA

Level n CA

User

…
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PKI Trust Models
• Hierarchical CAs with cross-certification

– Multiple root CAs that are cross-certified
– Cross-certification at lower levels for efficiency

• Web Model
– Browsers come pre-configured with multiple trust 

anchor certificates
– New certificates can be added

• Distributed (e.g., PGP)
– No CA; instead, users certify each other to build a “web 

of trust”



49

X.509 Certificates

• Some certificate components in X.509v3:
– Version
– Serial number
– Signature algorithm identifier: hash algorithm
– Issuer’s name; uniquely identifies issuer
– Interval of validity
– Subject’s name; uniquely identifies subject
– Subject’s public key
– Signature: encrypted hash
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Validation and Cross-Certifying
• Alice’s CA is Cathy; Bob’s CA is Don; how can Alice validate Bob’s 

certificate?
– Have Cathy and Don cross-certify
– Each issues certificate for the other

• Certificates:
– Cathy<<Alice>>
– Dan<<Bob>
– Cathy<<Dan>>
– Dan<<Cathy>>

• Alice validates Bob’s certificate
– Alice obtains Cathy<<Dan>>
– Alice uses (known) public key of Cathy to validate Cathy<<Dan>>
– Alice uses Cathy<<Dan>> to validate Dan<<Bob>>
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PGP Chains
• OpenPGP certificates structured into packets

– One public key packet
– Zero or more signature packets

• Public key packet:
– Version (3 or 4; 3 compatible with all versions of PGP, 

4 not compatible with older versions of PGP)
– Creation time
– Validity period (not present in version 3)
– Public key algorithm, associated parameters
– Public key
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OpenPGP Signature Packet
• Version 3 signature packet

– Version (3)
– Signature type (level of trust)
– Creation time (when next fields hashed)
– Signer’s key identifier (identifies key to encrypt hash)
– Public key algorithm (used to encrypt hash)
– Hash algorithm
– Part of signed hash (used for quick check)
– Signature (encrypted hash)

• Version 4 packet more complex
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Signing

• Single certificate may have multiple signatures
• Notion of “trust” embedded in each signature

– Range from “untrusted” to “ultimate trust”
– Signer defines meaning of trust level (no standards!)

• All version 4 keys signed by subject
– Called “self-signing”
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Validating Certificates
• Alice needs to validate 

Bob’s OpenPGP cert
– Does not know Fred, 

Giselle, or Ellen
• Alice gets Giselle’s cert

– Knows Henry slightly, but 
his signature is at “casual” 
level of trust

• Alice gets Ellen’s cert
– Knows Jack, so uses his 

cert to validate Ellen’s, then 
hers to validate Bob’s Bob

Fred

Giselle

Ellen
Irene

Henry

Jack

Arrows show signatures
Self signatures not shown
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Key Revocation
• Certificates invalidated before expiration

– Usually due to compromised key
– May be due to change in circumstance (e.g., someone 

leaving company)
• Problems

– Verify that entity revoking certificate authorized to do 
so

– Revocation information circulates to everyone fast 
enough

• Network delays, infrastructure problems may delay 
information
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CRLs
• Certificate revocation list lists certificates that are 

revoked
• X.509: only certificate issuer can revoke 

certificate
– Added to CRL

• PGP: signers can revoke signatures; owners can 
revoke certificates, or allow others to do so
– Revocation message placed in PGP packet and signed
– Flag marks it as revocation message



57

Digital Signature
• Construct that authenticated origin, contents of 

message in a manner provable to a disinterested 
third party (“judge”)

• Sender cannot deny having sent message (service 
is “nonrepudiation”)
– Limited to technical proofs

• Inability to deny one’s cryptographic key was used to sign
– One could claim the cryptographic key was stolen or 

compromised
• Legal proofs, etc., probably required; not dealt with here
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Simple Approach

• Classical: Alice, Bob share key k
– Alice sends m || { m } k to Bob

This is a digital signature
WRONGWRONG

This is not a digital signature
– Why? Third party cannot determine whether 

Alice or Bob generated message
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Classical Digital Signatures
• Require trusted third party

– Alice, Bob each share keys with trusted party Cathy
• To resolve dispute, judge gets { m } kAlice, { m } kBob, and 

has Cathy decipher them; if messages matched, contract 
was signed

Alice Bob

Cathy Bob

Cathy Bob

{ m }kAlice

{ m }kAlice

{ m }kBob
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Public Key Digital Signatures

• Alice’s keys are dAlice, eAlice

• Alice sends Bob
m || { m } dAlice

• In case of dispute, judge computes
{ { m } dAlice } eAlice

• and if it is m, Alice signed message
– She’s the only one who knows dAlice!
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RSA Digital Signatures

• Use private key to encrypt message
– Protocol for use is critical

• Key points:
– Never sign random documents, and when 

signing, always sign hash and never document
• Mathematical properties can be turned against 

signer
– Sign message first, then encrypt

• Changing public keys causes forgery
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Attack #1

• m1 x m2 mod nb = m
• Get Bob to sign m1 and m2

• m1
d mod nb x m2

d mod nb = 
• (m1

d x m2
d ) mod nb = 

• (m1 x m2
 )d mod nb = md mod nb



63

Attack #1 example
• Example: Alice, Bob communicating

– nA = 95, eA = 59, dA = 11
– nB = 77, eB = 53, dB = 17

• 26 contracts, numbered 00 to 25
– Alice has Bob sign 05 and 17:

• c = mdB mod nB = 0517 mod 77 = 3
• c = mdB mod nB = 1717 mod 77 = 19

– Alice computes 05×17 mod 77 = 08; corresponding 
signature is 03×19 mod 77 = 57; claims Bob signed 08

– Judge computes ceB mod nB = 5753 mod 77 = 08
• Signature validated; Bob is toast
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Attack #2: Bob’s Revenge
• Bob, Alice agree to sign contract m but wants it to 

appear that she signed contract M
– Alice encrypts, then signs:

(meB mod nB)dA mod nA

• Bob now changes his public key
– Computes r such that Mr mod nB = m
– Replace public key e'B with reB and computes a new matching 

private key d'B 
• Bob claims contract was M. Judge computes:

– (ceA mod nA)d'B mod nB = M
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Attack #2 Example
• Bob, Alice agree to sign contract 06
• Alice encrypts, then signs:

(meB mod 77)dA mod nA = (0653 mod 77)11 mod 95 = 63
• Bob now changes his public key

– Computes r such that 13r mod 77 = 6; say, r = 59
– Computes reB mod φ(nB) = 59×53 mod 60 = 7
– Replace public key eB with 7, private key dB = 43

• Bob claims contract was 13. Judge computes:
– (6359 mod 95)43 mod 77 = 13
– Verified; now Alice is toast
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El Gamal Digital Signature
• Relies on discrete log problem
• Choose p prime, g, d < p; compute y = gd mod p
• Public key: (y, g, p); private key: d
• To sign contract m:

– Choose k relatively prime to p–1, and not yet used
– Compute a = gk mod p
– Find b such that m = (da + kb) mod p–1
– Signature is (a, b)

• To validate, check that
– yaab mod p = gm mod p



67

Example
• Alice chooses p = 29, g = 3, d = 6

y = 36 mod 29 = 4
• Alice wants to send Bob signed contract 23

– Chooses k = 5 (relatively prime to 28)
– This gives a = gk mod p = 35 mod 29 = 11
– Then solving 23 = (6×11 + 5b) mod 28 gives b = 25
– Alice sends message 23 and signature (11, 25)

• Bob verifies signature: gm mod p = 323 mod 29 = 8 
and yaab mod p = 4111125 mod 29 = 8
– They match, so Alice signed
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Attack

• Eve learns k, corresponding message m, and 
signature (a, b)
– Extended Euclidean Algorithm gives d, the 

private key
• Example from above: Eve learned Alice 

signed last message with k = 5
m = (da + kb) mod p–1 = (11d + 5×25) 

mod 28
so Alice’s private key is d = 6
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Storing Keys

• Multi-user or networked systems: attackers may 
defeat access control mechanisms
– Encrypt file containing key

• Attacker can monitor keystrokes to decrypt files
• Key will be resident in memory that attacker may be able to 

read
– Use physical devices like “smart card”

• Key never enters system
• Card can be stolen, so have 2 devices combine bits to make 

single key
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Key Escrow
• Key escrow system allows authorized third party to 

recover key
– Useful when keys belong to roles, such as system 

operator, rather than individuals
– Business: recovery of backup keys
– Law enforcement: recovery of keys that authorized 

parties require access to
• Goal: provide this without weakening 

cryptosystem
• Very controversial
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Desirable Properties
• Escrow system should not depend on encryption 

algorithm
• Privacy protection mechanisms must work from 

end to end and be part of user interface
• Requirements must map to key exchange protocol
• System supporting key escrow must require all 

parties to authenticate themselves
• If message to be observable for limited time, key 

escrow system must ensure keys valid for that 
period of time only

Beth, Knobloch, Otten, Simmons, Wichmann 94
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Components

• User security component
– Does the encryption, decryption
– Supports the key escrow component

• Key escrow component
– Manages storage, use of data recovery keys

• Data recovery component
– Does key recovery
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Example: EES, Clipper Chip
• Escrow Encryption Standard

– Set of interlocking components
– Designed to balance need for law enforcement access to 

enciphered traffic with citizens’ right to privacy

• Clipper chip given to users prepares per-message 
escrow information
– Each chip numbered uniquely by UID
– Special facility programs chip

• Key Escrow Decrypt Processor (KEDP)
– Available to agencies authorized to read messages

• Details in Handbook of Applied Cryptography
– http://www.cacr.math.uwaterloo.ca/hac/about/chap13.pdf

NIST 94

http://www.cacr.math.uwaterloo.ca/hac/about/chap13.pdf
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Initialization of User Security 
Component

Escrow
Agent I

Escrow
Agent II

Secure FacilitySeed1, Key1, Fam1

Seed2, Key2, Fam2

User
“Clipper”

Chip

•Combine Fam1, Fam2

  to obtain kfamily

•Combine Key1,Key2
  to obtain kcomp

•Combine Seed1, Seed2

to generate sequence
kunique = ku1 ⊕ ku2

UID, kunique, 
kfamily

{ku2}kcomp

{ku1}kcomp
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User Security Component

• Unique device key kunique

• Non-unique family key kfamily

• Cipher is Skipjack
– Classical cipher: 80 bit key, 64 bit input, output blocks

• Generates Law Enforcement Access Field (LEAF) 
of 128 bits:
– { UID || { ksession } kunique || hash } kfamily

– hash: 16 bit authenticator from session key and 
initialization vector
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Obtaining Access

• Alice obtains legal authorization to read message
• She runs message LEAF through KEDP

– LEAF is { UID || { ksession } kunique || hash } kfamily

• KEDP uses (known) kfamily to validate LEAF, 
obtain sending device’s UID

• Authorization, LEAF taken to escrow agencies
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Agencies’ Role
• Each validates authorization
• Each supplies { kui } kcomp, corresponding key 

number
• KEDP takes these and LEAF:{ UID || { ksession } 

kunique || hash } kfamily

– Key numbers produce kcomp

– kcomp produces ku1 and ku2

– ku1 and ku2 produce kunique

– kunique and LEAF produce ksession
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Problems

• hash too short
– LEAF 128 bits, so given a hash:

• 2112 LEAFs show this as a valid hash
• 1 has actual session key, UID
• Takes about 42 minutes to generate a LEAF with a 

valid hash but meaningless session key and UID
– Turns out deployed devices would prevent this attack

– Scheme does not meet temporal requirement
• As kunique fixed for each unit, once message is read, 

any future messages can be read
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Yaksha Security System

• Key escrow system meeting all 5 criteria
• Based on RSA, central server

– Central server (Yaksha server) generates session key
• Each user has 2 private keys

– Alice’s modulus nA, public key eA

– First private key dAA known only to Alice
– Second private key dAY known only to Yaksha central 

server
– dAA dAY = dA mod Φ( nA)

Ganesan 96
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Alice and Bob

• Alice wants to send message to Bob
– Alice asks Yaksha server for session key
– Yaksha server generates ksession

– Yaksha server sends Alice the key as:
CA = (ksession)dAYeA mod nA

– Alice computes
(CA)dAA mod nA = ksession
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Analysis

• Authority can read only one message per 
escrowed key
– Meets requirement 5 (temporal one), because 

“time” interpreted as “session”
• Independent of message enciphering key

– Meets requirement 1
– Interchange algorithm, keys fixed

• Others met by supporting infrastructure
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Alternate Approaches
• Tie to time

– Session key not given as escrow key, but related key is
– To derive session key, must solve instance of discrete 

log problem
• Tie to probability

– Oblivious transfer: message received with specified 
probability

– Idea: translucent cryptography allows fraction f of 
messages to be read by third party

– Not key escrow, but similar in spirit
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Key Points
• Key management critical to effective use of cryptosystems

– Different levels of keys (session vs. interchange)
• Exchange algorithms can be vulnerable to attacks

– Replay
– Identity integrity

• Digital signatures provide integrity of origin and content
Much easier with public key cryptosystems than with classical 

cryptosystems
• Keys need infrastructure to identify holders, allow 

revoking and possible escrow
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