
1

Database Security

CS461/ECE422
 Information Assurance

Fall 2009

2

Overview

• Database Model
• Access control models
• Inherent database integrity and availability

3

Reading Material

• Pfleeger & Pfleeger “Security in Computing”
6.3 – on reserve in library and on google
books

• Griffiths and Wade, “An Authorization
Mechanism for a Relational Database”
– http://seclab.cs.uiuc.edu/docs/CS463/DatabaseSecurity/GriffithsW76.pdf

http://seclab.cs.uiuc.edu/docs/CS463/DatabaseSecurity/GriffithsW76.pdf

4

Motivation

• Databases are a common element in today's
system architecture

• Hold important information
– Target of attacks

5

Relational Model

• Information stored in relations or tables
– Each row is a tuple of attributes
– Manipulated by standard SQL language

Name UID College GPA Financial Aid
Alice 1232 Eng 4 0
Bob 3234 Eng 1.2 $5,000.00
Carol 4565 Bus 3.8 0
Dave 8988 Edu 2.1 0
Ellen 3234 ACES 3.1 $100.00
Alice 4534 LAS 2.9 $10,000.00

6

Combining tables

• Can use Join to create single set of tuples
from multiple tables.

Name UID Major
Alice 1234 ECE
Bob 2345 NUC
Carol 3456 BA
Dave 4567 French

UID Dorm
1234 LAR
2345 ISR
3456 FAR
4567 PAR

Name Dorm Major
Alice LAR ECE
Bob ISR NUC
Carol FAR BA
Dave PAR French

7

Making Queries

• Can select rows to create subtables
– Select Name, UID, Financial Aid from Students
where College = 'Eng'

Name UID College GPA Financial Aid
Alice 1232 Eng 4 0
Bob 3234 Eng 1.2 $5,000.00
Carol 4565 Bus 3.8 0
Dave 8988 Edu 2.1 0
Ellen 3234 ACES 3.1 $100.00
Alice 4534 LAS 2.9 $10,000.00

Name UID Financial Aid
Alice 1232 0
Bob 3234 $5,000.00

8

Database Advantages

• Years and years of technology improvements
– Data integrity and consistency
– Decent performance in face of integrity and

consistency requirements
• Common well understood model

– Shared access
– Controlled access

9

Access Control in System Design

DBMS

DB Store

Client

Application
Server

10

Access Control in the SQL Model

• Don't have to have a single owner of all data
– Can create new table
– Use “Grant” to give others privileges on table

• Can create views to have finer granularity
with access control

• Can delegate privilege granting authority to
others

Access Control Slides from Lars Olson

11

SQL grant Syntax

grant privilege_list on resource
to user_list;

• Privileges include select, insert, etc.
• Resource may be a table, a database, a function,
etc.

• User list may be individual users, or may be a
user group

Griffiths Wade 76

12

Example Application

• Alice owns a database table of company
employees:
name varchar(50),
ssn int,
salary int,
email varchar(50)

• Some information (ssn, salary) should be
confidential, others can be viewed by any
employee.

13

Simple Access Control Rules

• Suppose Bob needs access to the whole table (but
doesn’t need to make changes):
grant select on employee to bob;

• Suppose Carol is another employee, who should only
access public information:
grant select(name,email) on employee to
carol;

– not implemented in PostgreSQL (see next two slides for how
to work around this)

– not implemented for select in Oracle
– implemented in MySQL

14

Creating Views

• Careful with definitions!
– A subset of the database to which a user has access,

or:
– A virtual table created as a “shortcut” query of other

tables
• View syntax:
create view view_name as
query_definition;

• Querying views is nearly identical to querying
regular tables

15

View-Based Access Control

• Alternative method to grant Carol access to
name and email columns:
create view employee_public as
select name,email from
employee;

grant select on employee_public
to carol;

16

Row-Level Access Control

• Suppose we also allow employees to view their own
ssn, salary:
create view employee_Carol as
select * from employee
where name='Carol';

grant select on employee_Carol to carol;

• And we allow them to update their e-mail addresses:
grant update(email) on employee_Carol to
carol;

– (Or create yet another new view…)

17

Delegating Policy Authority

grant privilege_list on resource to
user_list with grant option;

• Allows other users to grant privileges, including “with
grant option” privileges

• “Copy right” from Access Control lecture (slide 21)
• Can grant subset privileges too

– Alice: grant select on table1 to bob with
grant option;

– Bob: grant select(column1) on table1 to
carol with grant option;

18

SQL revoke Syntax

revoke privilege_list on resource
from user_list;

• What happens when a user is granted access
from two different sources, and one is revoked?

• What happens when a “with grant option”
privilege is revoked?

19

Revoke Example 1

• Alice gives Read, Update, Insert privileges to
Bob for table X

• Carol gives Read, Update privileges to Bob
for table X

• Alice revokes Read, Update, Insert privileges
from Bob for table X

• What privileges should Bob now have on
table X?

20

Revoke Example 2

• Alice gives Read, Update, Insert privileges to
Bob for table X with Grant option

• Bob gives Read, Update privileges to Carol
for table X

• Alice revokes all privileges from Bob for
table X

• What privileges should Bob have on table X?
• What privileges should Carol have on table

X?

21

Revoke Example 3

• Alice gives Read, Update, Insert privileges to
Bob for table X with Grant option

• Bob gives Read, Update privileges to Carol
for table X with Grant option

• Carol gives Read, Update privileges to Bob
for table X

• Alice revokes all privileges from Bob for
table X

• What privileges do Bob and Carol have
now?

22

Disadvantages to SQL Model

• Too many views to create
– Tedious for many users, each with their own view
– View redefinitions that change the view schema

require dropping the view, redefining, then reissuing
privileges

– Fine-grained policies each require their own view—
and no obvious way to see that the views come from
the same table

• Other techniques being developed but not yet
widely deployed

23

Data Consistency

• Data is consistent if
– It never changes OR

• Only one person ever changes things at a time AND
– The system never crashes during a change OR
– All related changes can be made at once (atomic)

• Can loosen these restrictions with
transactions and two-phase commits

24

ACID Transactions

• Atomic – All changes in the transaction have
occurred or none of them occur

• Consistent – Transaction does not leave
database in half-finished state

• Isolation – Other participants do not see
transaction changes until transaction is
completed

• Durability – Committed changes will survive
system failure

25

Student Residence Database

Dorm Room Student 1 Student 2
LAR 10 Alice Eve
FAR 13 Mary Carol
ISR 123 Nancy

26

One Student Moving

• Actions
1.Remove student from old dorm list
2.Add to new dorm list

• Alice wants to move
– System crashes after step 1

• Alice is now homeless?

27

Two Students Moving

• A space opens up in dorm (ISR)
– Both Alice and Carol want to move there
– Independently talk with clerks to make the move

• Actions
– Remove student from old dorm list
– Add to new dorm list

• Only one space, so only Alice or Carol can
make the move
– Don't want to leave either without a dorm

28

Student moving

Dorm Room Student 1 Student 2
LAR 10 Alice Eve
FAR 13 Mary Carol
ISR 123 Nancy

29

Two Phase Update or Commit

• First phase
– Check the commit-flag (lock)
– Gather information to perform the transaction

• Set read lock as you go
• Store values persistently: shadow values or log

– Turn on the commit flag (lock)
• Second phase

– Copy logged or shadow values to real values
– Turn off the commit flag (lock)

• IBM example
– http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/c0005032.htm

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/c0005032.htm

30

Example Transaction

Shadow old row
Create new row

Shadow old row
Create new row

Set Commit FlagSet Commit FlagSet Commit FlagSet Commit FlagSet Commit Flag

Replace old row with new Give up and drop any
resources

Commit
Flag

OK
Already

Set

Set Commit Flag

31

Students Moving

• Alice and Carol check commit-flag
– Both create shadow versions of their old room

row and the new room row
• Alice sets commit-flag first

– Transaction checks that the target room is still
available

– Makes real copies same has her shadow
– Clears commit-flag

• Carol fails to get commit flag

32

What does this mean for security?

• Integrity controls in DB design for protection
against accidents.
– Also means that malevolent user cannot game

the entry of data into the DB for his/her benefit
• In general a secure programming or secure

development feature.

33

Key Points
• Database technology has inherently developed

good integrity mechanisms
• Access control models are available but not

perfect

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

