
Information Assurance: Homework 6

Due October 26, 2009.

1. The following policy is enforced in a business:
 Employees can access and update their own personal data. They can access their

own salary information.
 Managers can access personal and salary data about people that report to them
 Managers can update salary information for people who report to them.

Consider a specific case with the following entities:
 Alice reports to Bob.
 Bob reports to Carol.

The grading on this question was fairly generous. You may have gotten full or most
of the points but not answered the question fully. Review the grader comments
and the comments here.

a. Define the rights involved and create an Access Control Matrix to encode
the protection state for this scenario.

One way of expressing this. Right R = read or access. Right W = write or
update. Right M = manage. Tracking the manage right isn't strictly
necessary

Alice
PD

Alice
Salary

Bob
PD

Bob
Salary

Carol
PD

Carol
Salary

Alice Bob Carol

Alice RW R
Bob R RW RW R M
Carol R RW RW R M

b. Write the following command in the HRU model make_manager(s1, s2) –
Make s1 a manager of s2.

As noted in the newsgroup, this command needs a couple additional
arguments for the personal data and the salary objects.

make_manager(s1, s2, pd, sal)
 enter M in A[s1, s2]
 enter R in A[s1, pd]
 enter R,W in A[s1, s]

c. Another rule is added to the policy. A manager can only change an
employee's salary information if reviewed by their manager. Update the
ACM to reflect the protection state with this new rule.

There was a lot of variance here. I was trying to give a broader question to
think about how ACM's can be used in different ways. I'd do this by
adding a review right, V. Our managers no longer have the default right
to update their reports' salaries. Then our ACM from part a becomes:

Alice
PD

Alice
Salary

Bob
PD

Bob
Salary

Carol
PD

Carol
Salary

Alice Bob Carol

Alice RW R
Bob R R RW R M
Carol V R R RW R M

We add a new one-time write right, T. After reviewing Bob's suggestion for
the salary change, Carol can grant Bob a one time write right to create
protection state shown in the second ACM

Alice
PD

Alice
Salary

Bob
PD

Bob
Salary

Carol
PD

Carol
Salary

Alice Bob Carol

Alice RW R
Bob R RT RW R M
Carol V R R RW R M

This transition could be expressed as the following command

set_reviewed_salary_write(s1, s2, sal)
 if V in A[s1, sal] then
 enter T in [s2, sal]

d. Express the ACM as a set of access control lists.

You could have indicated one of the ACMs from part c. I was originally
assuming the ACM from part a. The ACL's in that case would be

ACL(Alice PD) = (Alice, {RW}), (Bob, {R})
ACL(Alice Salary) = (Alice, {R}), (Bob, {RW})
ACL(Bob PD) = (Bob, {RW}), (Carol, {R})
ACL(Bob Salary) = (Bob, {R}), (Carol, {RW})
ACL(Carol PD) = (Carol, {RW})
ACL(Carol Salary) = (Carol, {R})
ACL(Alice) = (Bob, {M})
ACL(Bob) = (Carol, {M})
ACL(Carol) = empty

2. In this question you will work through evaluating labeled access following the
Bell-LaPadula confidentiality model and Strict Biba integrity model. For the first
two sections consider the following labeled entities:

Subject Object Label
Alice Plan1 L1
Bob Plan2 L2
Carol Plan3 L3
Dave Plan4 L4
Ellen Plan9 L5

The labels follow a complete ordering L1 > L2 > L3 > L4 > L5.

I find the rules for execution in Biba fairly confusing. There are actually three
labeled objects involved, the invoking process, the new process, and the binary
file used to initialize the new process. I think in the Biba rule, S2 is the new
process. So it is saying that one process can not spawn a higher integrity
process. In this exercise it seems that we are more addressing files.

a. Interpret the labels as security labels in the simplified Bell-LaPadula
model. Fill the the access column with the access that BLP would give
each subject to the corresponding object: read, append (also mentioned in
lecture as a pure write).

Subject Object Access?
Alice Plan4 Read
Bob Plan2 Read, Append
Ellen Plan3 Append
Dave Plan9 Read

b. Now interpret the labels as integrity labels in the strict Biba model. Fill
the access column with the access that strict Biba would give each subject
to the corresponding object: read, write, execute.

Subject Object Access?
Alice Plan4 Write, Execute
Bob Plan2 Read, Write, Execute
Ellen Plan3 Read
Dave Plan9 Write, Execute

c. Now consider the case where the labels have categories in addition to the
completely ordered levels. We add categories alpha and omega. The new
label assignments are:

Subject Subject Label Object Object Label
Alice L1:{alpha} Plan1 L1:{alpha}
Bob L2:{alpha,omega} Plan2 L2:{omega}
Carol L3:{omega} Plan3 L3:{alpha, omega}
Dave L4:{omega} Plan4 L4:{alpha}
Ellen L5:{alpha} Plan9 L5:{omega}

Interpret these labels according to the Bell-LaPadula Model. Fill the the
access column with the access that BLP would give each subject to the
corresponding object: read, append (also mentioned in lecture as a pure
write).

Subject Object Access?
Alice Plan2 No access
Bob Plan2 Read
Ellen Plan4 Append
Dave Plan9 Read

d. In class we only discussed the simple form of labels for Biba, but we
mentioned the model could be extended to use the level and category
labels as used in Bell-LaPadula. Now interpret the labels as integrity
labels in the strict Biba model. Fill the access column with the access that
strict Biba would give each subject to the corresponding object: read,
write, execute.

Subject Object Access?
Alice Plan2 No access
Bob Plan2 Write, execute
Ellen Plan4 Read
Dave Plan9 Write, execute

3. Suppose a database for a department store contains an 'employee' table listing all
employees' names, e-mail addresses, SSNs, salaries, hiring dates, and departments.
The employee table rows for three employees is shown below

Name Email SSN Salary Hired Department
Alice alice@mart.com xxx-xx-xxxx $20.00 01/01/97 Appliance
Bob bob@mart.com yyy-yy-yyyy $15.00 07/11/05 Shoes
Carol carol@mart.com zzz-zz-zzzz $12.00 11/11/08 Hardware

a. Suppose you are the database administrator. Your company has a
policy that each employee can see the names, e-mails, and hiring dates
of all other employees in the same department. Show the SQL statements for
these three employees to enforce this policy.

Strictly speaking, you should express this as three separate statements, one for
each employee, e.g.:

grant select(Name, Email, Hired) on employee where Department = 'Appliance'
to 'Alice';

It is also acceptable to express as a parameterized user name and department
name, e.g.,

grant select(Name, Email, Hired) on employee where Department =
EmployeeDepartment to Employee;

You could also express this as a view and then a grant. The exact syntax is not
important as long as the key parts are there.

b. The company policy states that every employee should be able to view all
fields about themselves in the 'employee' table. Show the SQL statements you
would use to enforce this policy.

Again, could express the rules for each employee, or parameterize one set of
rules. Could be expressed as a grant rule directly or as a view and grant
combination, e.g.,

create view alice_private as select * from employee where name = 'Alice';
grant select on alice_private to Alice;

create view bob_private as select * from employee where name = 'Bob';
grant select on bob_private to Bob;

create view carol_private as select * from employee where name = 'Carol';
grant select on carol_private to Carol;

mailto:carol@mart.com
mailto:bob@mart.com
mailto:alice@mart.com

c. The company policy further states that an employee may choose to share this
information with other employees of the company. How would you amend
your answer in part b to enable an employee to allow other employees to view
his or her non-public information in the 'employee' table?

Several ways one could do about this. The one I was looking for was amending
the grant statements from part b to add the with grant option. e.g.,

grant select on alice_private to Alice with grant option;

This means that Alice can turn around and use another grant statement to pass on
the select right to others.

You could also redesign the table, so there is a “allow_view_by_others” field.

	Information Assurance: Homework 6

