ODE Stability

Stephen Bond

UIUC

CS 450, Spring 2010

Scalar Test Problem

• Solve the Ordinary Differential Equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda \, y, \qquad \text{with} \qquad y(0) = y_0$$

Exact Solution

$$y(t) = y_0 e^{\lambda t}$$

• Solution is asymptotically stable or decaying in magnitude if

 $\operatorname{Re}(\lambda) < 0$

• Solution is stable or not growing in magnitude if

 $\operatorname{Re}(\lambda) \leq 0$

Stephen Bond (UIUC)

ODE Stability

Stability

"Stable" values of λ in Complex Plane:

$$\lim_{t\to\infty}e^{\lambda t}=?$$

 $\operatorname{Re}(\lambda) > 0$ (Unstable)

 $\operatorname{Re}(\lambda) \leq 0$ (Stable)

Left Half-Plane = Stable

Right Half-Plane = Unstable

Euler's Method

• Euler's Method

$$y_{k+1} = y_k + hf(t_k, y_k)$$

• Apply Euler's Method to

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda \, y, \qquad \text{with} \qquad y \, (0) = y_0$$

we get

$$y_{k+1} = y_k + h\,\lambda y_k$$

• Regrouping terms

$$y_{k+1} = (1 + h\lambda)y_k = (1 + h\lambda)^{k+1}y_0$$

• Euler's Method is stable if

$$|1+h\lambda| \leq 1$$

Stephen Bond (UIUC)

Forward Euler: Stability

For $\operatorname{Re}(\lambda) > 0$, method is Unconditionally Unstable

Stephen Bond (UIUC)

Backward Euler's Method

Backward Euler's Method

$$y_{k+1} = y_k + h f(t_{k+1}, y_{k+1})$$

• Apply Backward Euler's Method to

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda \, y, \qquad \text{with} \qquad y \, (0) = y_0$$

we get

$$y_{k+1} = y_k + h\,\lambda y_{k+1}$$

Regrouping terms

$$y_{k+1} = (1 - h\lambda)^{-1} y_k = \left(\frac{1}{1 - h\lambda}\right)^{k+1} y_0$$

• Backward Euler's Method is stable if

$$\frac{1}{|1-h\lambda|} \le 1$$

Stephen Bond (UIUC)

Backward Euler: Stability

For $\operatorname{Re}(\lambda) < 0$, method is Unconditionally Stable

For $\operatorname{Re}(\lambda) > 0$, method is Conditionally Stable or Conditionally Unstable

Trapezoid Method

• Trapezoid Method

$$y_{k+1} = y_k + \frac{h}{2}f(t_k, y_k) + \frac{h}{2}f(t_{k+1}, y_{k+1})$$

• Apply Trapezoid Method to

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \lambda \, y, \qquad \text{with} \qquad y \, (0) = y_0$$

we get

$$y_{k+1} = y_k + \frac{h}{2}\lambda y_k + \frac{h}{2}\lambda y_{k+1}$$

Regrouping terms

$$y_{k+1} = \frac{1+h\lambda/2}{1-h\lambda/2}y_k = \left(\frac{1+h\lambda/2}{1-h\lambda/2}\right)^{k+1}y_0$$

• Trapezoid Method is stable if

$$\left|rac{1+h\lambda/2}{1-h\lambda/2}
ight|\leq 1$$

Stephen Bond (UIUC)

ODE Stability

Trapezoid: Stability

"Stable" values of $h\lambda$ in Complex Plane: $\lim_{k\to\infty} \left|\frac{1+h\lambda/2}{1-h\lambda/2}\right|^k = ?$ (Unstable) $|1 + h\lambda/2| > |1 - h\lambda/2|$ $|1+h\lambda/2| \le |1-h\lambda/2|$ (Stable)

For $\operatorname{Re}(\lambda) < 0$, method is Unconditionally Stable

For $\operatorname{Re}(\lambda) > 0$, method is Unconditionally Unstable

Linear Stability Summary

	${ m Re}\left(\lambda ight)<=0$	$\operatorname{Re}(\lambda) > 0$
Exact Soln.	Stable	Unstable
Forward Euler	"Conditionally Stable" (stable for $ 1+h\lambda \leq 1)$	"Unconditionally Unstable" (unstable for $h > 0$)
Backward Euler	"Unconditionally Stable" (stable for $h \ge 0$)	"Conditionally Stable" (stable for $ 1-h\lambda \geq 1)$
Trapezoid	"Unconditionally Stable" (stable for $h \ge 0$)	"Unconditionally Unstable" (unstable for $h > 0$)

• Question: What about non-linear problems?

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y) \qquad \text{with} \qquad y(0) = y_0$$

• Answer: Use the derivative of f:

Let
$$\lambda = \frac{\partial f}{\partial y}$$
 and check stability

for maximum and minimum values of λ .

• Question: What about linear systems of ODEs?

$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}t} = A\vec{y} + g(t) \qquad \text{with} \qquad \vec{y}(0) = \vec{y}_0$$

• Answer: Use the eigenvalues of A:

Let λ_i be the eigenvalues of A,

and check stability for each λ_i .

- Stable if all λ_i satisfy stability conditions!
- Unstable if any λ_i violates stability conditions!

• Question: What about nonlinear systems of ODEs?

$$\frac{\mathrm{d}\vec{y}}{\mathrm{d}t} = f(t, \vec{y}) \qquad \text{with} \qquad \vec{y}(0) = \vec{y}_0$$

• Answer: Use the Jacobian of f:

Let
$$\lambda_i$$
 be the eigenvalues of $J_f := \left[rac{\partial f_i}{\partial y_j}
ight],$

and check stability for each eigenvalue λ_i .