
 

 

Solutions to Mid-term Sample Questions 
Problem 1  
Can an environment be both known and unobservable? Give an example. 

Solution 
An environment can be both known and unobservable. An example of this is Russian roulette, a 
potentially lethal game of chance in which a player places a single round in a revolver, spins the 
cylinder, places the muzzle against his head, and pulls the trigger. 
The environment is known beforehand (i.e., each agent knows what actions are possible, what 
states of the world are possible, and what effect will follow from each possible combination of a 
world state + action), but the revolver state is unobservable from agents (they cannot observe 
where the bullet is located). 
Another example could be the maze environment from MP1. The agent may be given the 
definition of the environment (the maze) but have no sensing capabilities. Such agent could still 
find the solution to the maze and execute the solution, assuming the agent can execute perfectly. 

Problem 2 
What is the distinction between a world state and a search tree node? 

Solution 
A world state is a description or “snapshot” of the world. A search tree node is part of the search 
tree data structure. It contains a world state along with other information (heuristic function 
value, evaluation function value, parent pointer, etc.). In general, it is possible for multiple tree 
nodes to contain the same world state.  

Problem 3 
In the tree search formulation, why do we restrict step costs to be non-negative? 

Solution 
If there is a loop with a net negative cost in the state space, a search algorithm can keep going 
around this loop infinitely and lowering its cost every time. 

  



 

 

Problem 4 
Each of the following sub-problems describes a type of maze.  For each type of maze, specify 
whether breadth-first-search (BFS) or depth-first-search (DFS) will more efficiently find a 
solution, and say why.  
 
a. The Albuquerque maze has 3 possible directions that you can take at each intersection.  No 
path is longer than 25 steps.  There is only one correct solution. 

Solution 
If you assume that the correct solution has a depth of 25, then DFS and BFS have exactly the 
same time complexity, O{3^25}. If you assume that the correct solution might have a depth 
d<25, then BFS is more efficient: BFS requires O{3^d}, while DFS requires O{3^25} steps. 
 
b. The Belmont maze has 3 possible directions that you can take at each intersection.  No path is 
longer than 25 steps.  About half of all available paths are considered correct solutions to the 
maze. 

Solution 
DFS is better, because it has an average-case time complexity of O{2*25}, which is much less 
than the BFS complexity O{3^25}. 
 
c. The Crazytown maze has 3 possible directions that you can take at each intersection.  The 
maze is infinite in size, so some paths have infinite length.  There is only one correct solution, 
which is known to require only 25 steps. 

Solution 
BFS is better, because its complexity is only O{3^25}.  DFS has a complexity of O{b^m} where 
m is infinite. 

 
Problem 5 
Suppose you are given a “perfect” heuristic function that gives the correct optimal distance from 
each node to the goal. Is greedy best-first search with this heuristic optimal? If not, give a 
counterexample. 

Solution 
It is not optimal. Counterexample is below. 

 

 
 



 

 

Problem 6 
Explain why it is a good heuristic to choose the variable that is most constrained but the value 
that is least constraining in a CSP search. 

Solution 
By choosing the variable that is most constrained we are minimizing the branching factor of 
backtracking search. We are also selecting the variable that is most likely to cause a failure soon. 
This helps us prune our search tree by avoiding pointless searches through other variables when 
one fails. By choosing the value that is least constraining we are maximizing the possible options 
for neighboring variables and giving our search more flexibility and maximizing the possibility 
of finding a solution.  
 

Problem 7 
What is local search for CSPs? For which kinds of CSPs might local search be better than 
backtracking search? What about the other way around? 

Solution 
Local search for CSPs is to assign a value to every variable at the initial state, and the search 
changes the value of one variable at a time. Local search (i.e., hill climbing) may be a good 
choice when the problem is relatively loosely constrained and there are many possible solutions. 
An example of such a problem is n-queens. Backtracking search may be better for more tightly 
constrained problems with few possible solutions, such as sudoku. In such problems, it is also 
difficult to come up with local modifications that can remove constraint violations. 

  



 

 

Problem 8 
Refer to the maze shown below. Here, ‘M’ represents Mario, ‘P’ represents Peach, and the goal 
of the game is to get Mario and Peach to find each other. In each move, both Mario and Peach 
take turns. For example, one move would consist of Peach moving a block to the bottom from 
her current position, and Mario moving one block to the left from his current position. Standing 
still is also an option.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Describe state and action representations for this problem. 
b. What is the branching factor of the search tree? 
c. What is the size of the state space? 
d. Describe an admissible heuristic for this problem. 

Solution 
a. State = [mx,my,px,py] where (mx,my)=position of Mario, (px,py)= position of Peach. 

Action � {ml,mr,mu,md,ms}X{pl,pr,pu,pd,ps} where the first letter denotes the person 
moving (Mario or Peach), the second letter denotes the direction of movement (left, right, 
up, down, or stay). 
 

b. 25 
c. (54-20)x(54-20-1)=34x33=1122 
d. Manhattan distance: |mx-px|+|my-py| 



 

 

Problem 9 
 

Consider the search problem with the following state space: 

 
S denotes the start state, G denotes the goal state, and step costs are written next to each arc. 
Assume that ties are broken alphabetically (i.e., if there are two states with equal priority on the 
frontier, the state that comes first alphabetically should be visited first). 

 
a. What path would BFS return for this problem? 
b. What path would DFS return for this problem? 
c. What path would UCS return for this problem? 
d. Consider the heuristics for this problem shown in the table below. 

 
Is h1 admissible? Is it consistent?  
Is h2 admissible? Is it consistent? 

 

Solution 
a. S-G 
b. S-A-B-D-G 
c. S-A-C-G 
d. h1 is neither admissible nor consistent; h2 is admissible but is not consistent. 



 

 

Problem 10 
Consider the graph-coloring problem on the following tree-structured CSP.  

 
We assume there are three available colors (R,G,B) and some nodes are constrained to use only a 
subset of these colors, as indicated above. Show all the steps for applying the tree-structured CSP 
algorithm for finding a solution to this problem. 

Solution 
The first step is to do a topological sort of the graph: for example, (1, 3, 4, 5, 2, 8, 7, 6). The next 
step is to do arc-consistency in the graph between each node and its parent, in reverse topological 
order. For this case, the only change the algorithm does is to the domain of node 3 (it limits it to 
R) and to the domain of 1 (it limits it to G, B). Therefore, the domain for each variable is 1: (G, 
B), 2: (R, G, B), 3:(R), 4: (G), 5: (R, B), 6: (R, B), 7: (R, G, B), 8: (G, B). The final step is to 
follow the topological ordering and assign any consistent value from the arc-consistent domain 
to each variable. The result is a consistent assignment. For example: (1: G, 3: R, 4: G, 5: B, 2: R, 
8: G, 7: G, 6: R). 
 

  



 

 

Problem 11 
For each of the following problems, determine whether an algorithm to optimally solve the 
problem requires computation time that is polynomial or exponential in the parameters d and m.  
 
a. A map has d regions.  Colors have been applied to all d regions, drawing from a set of m 
possible colors.  Your algorithm needs to decide whether or not any two adjacent regions have 
the same color. 
b. A map has d regions.  Your algorithm needs to assign colors to all d regions, drawing colors 
from a set of m possible colors, in order to guarantee that no two adjacent regions have the same 
color. 
c. Your algorithm needs to find its way out of a maze drawn on a d-by-d grid.  
d. Your algorithm needs to find the shortest path in a d-by-d maze while hitting m waypoints 
(equivalent to dots in MP1 part 1.2). 
e. Your algorithm needs to find the best strategy for a zero-sum game.  There are two players. At 
each turn, each of the players chooses from among m possible moves. After d rounds of game 
play, the game ends. 

Solution 
a. Polynomial in d, Constant (Polynomial with order 0) in m. 

b. Polynomial in m, Exponential in d. 

c. Exponential in d. 

d. Exponential in d, Exponential in m. 

e. Polynomial in d, Polynomial in m.  This one is a bit of a trick question.  Finding the set of all 

Nash equilibria is exponential in m if you include mixed strategies; but this question is only 

asking for a minimax solution, which is polynomial in m.  Similarly, searching through all 

possible sequences of play would be exponential in d if each round of play can influence the 

decision taken by the other player in the next round, but in a zero-sum game there is no 

chance to collaborate, so there is no way to influence the other player’s next round of play, 

so the best strategy is to choose the minimax solution at each round of play. 



 

 

 
Problem 12 
How can randomness be incorporated into a game tree? How about partial observability 
(imperfect information)? 

Solution 
We need to add a chance node for every random event in the game, for example, a dice throw or 
random cards being dealt. The children of the chance node correspond to all possible outcomes, 
and each outcome also has a probability associated with it. Partial observability gives rise to 
states being grouped into information sets for each player. An information set consists of all 
states that look the same from the viewpoint of one of the players. 

 
Problem 13 
In the lectures, we covered Nash equilibrium strategies for simultaneous move games. We can 
also consider minimax strategies for such games, defined in the same way as for alternating 
games. What would be the minimax strategies in the Prisoner’s Dilemma, Stag Hunt, and Game 
of Chicken? Do they differ from Nash equilibrium strategies? When/why would one prefer to 
choose a minimax strategy rather than a Nash equilibrium strategy? 

Solution 
A minimax strategy is a strategy that maximizes your worst-case payoff. Prisoner’s Dilemma: 
minimax strategy is still to testify (defect). Stag Hunt: go for the hare. Game of Chicken: go 
chicken. You may want to use a minimax strategy if you want to avoid the need to coordinate 
with your opponent, or if you have reason to believe that your opponent may not be rational. 

 
  



 

 

Problem 14 
Consider the following expectiminimax tree:  

 
 
Circle nodes are chance nodes, the top node is a min node, and the bottom nodes are max 
nodes.  

a. For each circle, calculate the node values, as per expectedminimax definition. 
b. Which action should the min player take? 

 

Solution 
 

a. The node values, from left to right, are as follows  
i. 2/3 * 3 + 1/3 * 6 = 4; 
ii. ½ * 4 + 3/8 * 8 + 1/8 * 2 = 5.25; 
iii. 7/10 * 2 + 3 / 10 * 10 = 4.4. 

b. The action M1 should be taken. [Should label the actions, otherwise it might be hard to 
describe the action to be taken.] 
 

  



 

 

Problem 15 
Suppose that both Alice and Bob want to go from one place to another. There are two routes R1 
and R2. The utility of a route is inversely proportional to the number of cars on the road. For 
instance, if both Alice and Bob choose route R1, the utility of R1 for each of them is 1/2.  

a. Write down the payoff matrix.   
b. Is this a zero-sum game?  
c. Find dominant strategies (if any). 
d. Find pure strategy equilibria (if any). 
e. Find the mixed strategy equilibrium. 

 

Solution 
a. The payoff matrix is as follow.  

 Alice 

 
Bob 

 R1 R2 

R1 (1/2, 1/2) (1, 1) 

R2 (1, 1) (1/2, 1/2) 

b. No.  
c. There is no dominant strategy.  
d. There are two pure equilibria: (R1, R2) and (R2, R1). 
e. Denote the probability that Alice chooses R1 is p and Bob chooses R1 is q. Therefore, the 

expected payoff Alice will have via choosing R1 is  
½ q + (1 – q); 
the expected payoff Alice will have via choosing R2 is  
q + ½ (1 – q). 
Since this mix strategy is an equilibrium, we have 
 ½ q + (1 – q) = q + ½ (1 – q), 
which yields that q = 1/2 .  
Similarly, we obtain that p = ½. 
Hence, we have the mixed strategy is that both Alice and Bob choose R1 with probability 
½.  
 


