
Lecture 14:
Overlays

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

May 1, 2010

Administrivia

• Upcoming deadlines

– Presentation date signup due this Thursday
Sept 17th

– Track 1: MP1 due Sept 29th

Overlay networks

• Overlay networks
– Improved flexibility and

• Distributed Hash Tables
– Improved scalability, allow insertion of objects

• P2P, Bittorrent
– Incentives for participation, lookup of local files

• Content distribution networks
– Managed (provider-owned)

Overlay Networks and DHTs

Overlay networks: Motivations

• Protocol changes in the network happen very slowly

• Why?
– Internet is shared infrastructure; need to achieve consensus

– Many proposals require to change a large number of routers
(e.g. IP Multicast, QoS); otherwise end-users won’t benefit

• Proposed changes that haven’t happened yet on
large scale:
– More addresses (IPv6, 1991)

– Security (IPSEC, 1993); Multicast (IP multicast, 1990)

Overlay networks: Motivations

• Also, “one size does not fit all”

• Applications need different levels of

– Reliability

– Performance (latency

– Security

– Access control (e.g., who is allowed to join
a multicast group)

Overlay networks: Goals

• Make it easy to deploy new
functionalities in the network �
Accelerate the pace of innovation

• Allow users to customize their service

Solution

• Build a computer network on top of another
network
– Individual hosts autonomously form a “virtual”
network on top of IP

– Virtual links correspond to inter-host connections
(e.g., TCP sessions)

Example:
Resilient Overlay Networks

• Premise: by building an application-layer overlay
network, can increase performance and reliability of
routing

• Install N computers at different Internet locations

• Each computer acts like an overlay network router
– Between each overlay router is an IP tunnel (logical link)

– Logical overlay topology is all-to-all (N2 total links)

• Run a link-state routing algorithm over the overlay
topology
– Computers measure each logical link in real time for packet

loss rate, throughput, latency � these define link costs

– Route overlay traffic based on measured characteristics

Motivating example:
a congested network

R

R
R

R

R

R

A B

C

Solution: an “overlay” network

R

R
R

R

R

R

A B

C
Establish TCP

sessions (“overlay
links”) between hosts

A B

C
Loss=1%

Loss=2%

Loss=25%

Path taken by
TCP sessions

Machines
remember overlay

topology, probe
links, advertise

link quality

Benefits of overlay networks

• Performance:

– Difficult to provide QoS at network-layer due to
deployment hurdles, lack of incentives,
application-specific requirements

– Overlays can probe faster, propagate more routes

• Flexibility:

– Difficult to deploy new functions at IP layer

– Can perform multicast, anycast, QoS, security, etc

New problem: scalability

A B

C

Outdegree=2
8

Problems:
Number of links increases with O(n^2)

Link-state overhead increases with O(n^3)!

Alternative:
replace full-mesh with logical ring

A B

C

Problem:
Stretch increases with O(n)

Still requires O(n) state per node D

E

F

Alternative:
replace full-mesh with ring

Problem:
Stretch: increases with O(n)
State: still requires O(n) state per node

Improvement:
keep some long distance pointers

Improvement:
Stretch: reduces to O(lg n)
State: reduces to O(lg n)

Scaling overlay networks with
Distributed Hash Tables (DHTs)

• Assign each host a numeric identifier
– Randomly chosen, hash of node name, public key, etc

• Keep pointers (fingers) to other nodes
– Goal: maintain pointers so that you can reach any

destination in few overlay hops
– Choosing pointers smartly can give low delay, while

retaining low state

• Can also store objects
– Insert objects by “consistently” hashing onto id space

• Forward by making progress in id space

Different kinds of DHTs

• Different topologies give different bounds on stretch (delay
penalty)/state, different stability under churn, etc. Examples:

• Chord
– Pointers to immediate successor on ring, nodes spaced 2^k around

ring
– Forward to numerically closest node without overshooting

• Pastry
– Pointers to nodes sharing varying prefix lengths with local node,

plus pointer to immediate successor
– Forward to numerically closest node

• Others: Tapestry (like Pastry, but no successor pointers), CAN
(like Chord, but torus namespace instead of ring)

The Chord DHT

“Fingers” maintained
for performance

Each node assigned
numeric identifier from

circular id-space

“Successors”
maintained for
correctness 504504+1

504+2

504+4

504+8

504+16

504+3

Chord Example: Forwarding a lookup

dest=802
000999

106

802

Cuts namespace-distance in half per hop
+

You can divide any integer N in half at
most log(N) times

= logarithmic stretch

Chord Example: Joining a new node

000999

406

1. Joining node must be
aware of a “bootstrap” node
in DHT. Joining node sends

join request through
bootstrap node towards the

joining node’s ID
Join(406)

798

2. Bootstrap forwards
message towards joining

node’s ID, causing
message to resolve to
joining node’s future

successor

410 398

3. Successor informs
predecessor of its new

successor, adds
joining node as new

predecessor

Chord: Improving robustness

• To improve robustness, each node can
maintain more than one successor

– E.g., maintain the K>1 successors immediately
adjacent to the node

• In the notify() message, node A can send its
k-1 successors to its predecessor B

• Upon receiving the notify() message, B can
update its successor list by concatenating the
successor list received from A with A itself

Chord: Discussion

• Query can be implemented
– Iteratively

– Recursively

• Performance: routing in the overlay network can be
more expensive than routing in the underlying
network
– Because usually no correlation between node ids and their

locality; a query can repeatedly jump from Europe to North
America, though both the initiator and the node that store
them are in Europe!

– Solutions: can maintain multiple copies of each entry in their
finger table, choose closest in terms of network distance

The Pastry DHT
1320’s pointer table (base=4, digits=4)

Increasing digit ���� In
creasin

g
p

refix
len

g
th

 �� ��

1*: 2*: 3*: 0*:
11*: 12*: 13*:
131*: 132*: 133*:

10*:
130*:

1321: 1322: 1323: 1320:
1320

Pointers to neighbors that
match my ID with varying
prefix lengths,with most
significant digit varied

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

Goal: fill each “pointer table”
entry with topologically-

nearby nodes (1320 points
to 2032 instead of 2211,

even though they both fit in
this position)

1322

My own ID matches, can
leave blank (next row
down will have more

specific match anyway)

No node fits
here, leave blank

1310

2032 3233
1103 1221
1310 1333

0002
1023

1321 1323

1321

1323

The Pastry DHT

1320

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

1322

1310

1321

1323

dst=3122

1320’s pointer table (base=4, digits=4)
1*: 2*: 3*: 0*:

11*: 12*: 13*:
131*: 132*: 133*:

10*:
130*:

1321: 1322: 1323: 1320:

1103
1310
1321

2032 3233
1221

1333
1323

0002
1023 Forward to node in

table with identifier
sharing longest prefix

with destination

3233’s pointer table (base=4, digits=4)
1*: 1320 2*: 3*: 0*:
31*: 32*: 33*:
321*: 322*: 323*:

30*:
320*:

3231: 3232: 3233: 3230:

3103
2130

3211
0002

3103’s pointer table (base=4, digits=4)
1*: 1320 2*: 3*: 0*:
31*: 32*: 33*:
311*: 312*: 3122 313*:

30*:
310*:

3101: 3102: 3103: 3100:

2032
3211

0002

Fixes one digit per hop
+

logarithmic number of digits per hop
= logarithmic stretch

The Pastry DHT

1320

1023
3233

3103

2130

1221

2211

0103

02320002

2032

1333
1103

3122

3211

1322

1310

1321

1323

3231

3231’s pointer table (stored in join pkt)
1*: 1320 2*: 3*: 0*:

31*: 32*: 33*:
321*: 322*: 3221 323*:

30*:
320*:

3231: 3232: 3233: 3230:

3103
3211

2130 3122
3211

3233
3233

0002

Join (dst=3231)

1321’s pointer table (base=4, digits=4)
1*: 1320 2*: 3*: 0*:

11*: 12*: 13*:
131*: 132*: 133*:

10*:
130*:

1321: 1322: 1322 1323: 1320:
1310

2130 3122
1323
1333
1323

0002
1023

3122’s pointer table (base=4, digits=4)
1*: 1320 2*: 3*: 0*:

31*: 32*: 33*:
311*: 312*: 313*:

30*:
310*: 3103

3121: 3122: 3123: 3120:

3103
3211

2032
3211

0002
3211’s pointer table (base=4, digits=4)

1*: 1320 2*: 3*: 0*:
31*: 32*: 33*:
321*: 322*: 3221 323*:

30*:
320*:

3211: 3212: 3213: 3210:

3103
2032

3233

0002
3233’s pointer table (base=4, digits=4)

1*: 1320 2*: 3*: 0*:
31*: 32*: 33*:
321*: 322*: 3221 323*:

30*:
320*:

3231: 3232: 3233: 3230:

3103
3211

2032
3211

3233

0002

Content Addressable Network (CAN)

• Associate to each node and item a
unique id in a d-dimensional space

• Properties

– Routing table size O(d)

– Guarantees that a file is found in at most
d*n1/d steps, where n is the total number
of nodes

CAN Example:
Two dimensional space

• Space divided between
nodes

• All nodes cover the
entire space

• Each node covers either
a square or a
rectangular area of
ratios 1:2 or 2:1

• Example:
– Assume space size (8x8)

– Node n1:(1,2) first node
that joins
• Cover the entire space

CAN Example:
Two dimensional space

• Node n2:(4,2)
joins � space is
divided between
n1 and n2

CAN Example:
Two dimensional space

• Node n2:(4,2)
joins � space is
divided between
n1 and n2

CAN Example:
Two dimensional space

• Nodes n4:(5,5)
and n5:(6,6) join

CAN Example:
Two dimensional space

• Nodes:
– n1:(1,2)
– n2:(4,2)
– n3:(3,5)
– n4:(5,5)
– n5:(6,6)

• Items:
– f1(2,3)
– f2(5,1)
– f3:(2,1)
– f4(7,5)

CAN Example:
Two dimensional space

• Each item is
stored at the node
who owns the
mapping in its
space

CAN Example:
Two dimensional space

• Query example:

• Each node knows its
neighbors in the d-
space

• Forward query to the
neighbor that is
closest to the query
id

• Example: assume n1
queries f4

Preserving consistency

• What if a node fails?

– Solution: probe neighbors to make sure
alive, proactively replicate objects

• What if node joins in wrong position?

– Solution: nodes check to make sure they
are in the right order

– Two flavors: weak stabilization, and strong
stabilization

Chord Example: weak stabilization

000999

732

885

900
051

122

480

502

538
619

670

Check: if my successor’s
predecessor is a better match for

my successor

n.stablize():
x=successor.predecessor;
if (x in (n, successor))
successor=x

successor.notify(n)

Tricky case: zero position on
ring

Example where weak stabilization
fails

000999

480

720

891
619

670

885

900

051
122

301

n.stablize():
x=successor.predecessor;
if (x in (n, successor))

successor=x
successor.notify(n)

Comparison of DHT geometries

Kademlia

Tapestry, Pastry

Plaxton

CAN

Chord, Symphony

Algorithm

XOR
d(id1, id2) = id1 XOR id2

Hybrid =
Tree + Ring

Tree

Hypercube

Ring

Geometry

Comparison of DHT algorithms

• Node degree: The number of neighbors per node
• Dilation: Length of longest path that any packet traverses in the

network
– Stretch: Ratio of longest path to shortest path through the underlying

topology

• Congestion: maximum number of paths that use the same link

Security issues

• Sybil attacks
– Malicious node pretends to be many nodes
– Can take over large fraction of ID space, files

• Eclipse attacks
– Malicious node intercepts join requests, replies
with its cohorts as joining node’s fingers

• Solutions:
– Perform several joins over diverse paths, PKI,
leverage social network relationships, audit by
sharing records with neighbors

Hashing in networked software

• Hash table: maps identifiers to keys
– Hash function used to transform key to index
(slot)

– To balance load, should ideally map each key to
different index

• Distributed hash tables
– Stores values (e.g., by mapping keys and values
to servers)

– Used in distributed storage, load balancing, peer-
to-peer, content distribution, multicast, anycast,
botnets, BitTorrent’s tracker, etc.

01

02

04

Background: hashing

00

hashes

03

01

02

04
05...

08

function

Ahmed

Yan

John

Viraj

keys

Example

• Example: Sum ASCII digits, mod number of bins

• Problem: failures cause large shifts

00

hashes

01

02
03
04
05

function

Yan

John

Ahmed

Viraj

keys

A H M E D

Y A N
89+65+78=232
232%9=7

J O H N
74+79+72+78=303
303%9=6

V I R A J
86+73+82+65+74=380
380%9=2

06
07
08

00

02

06
07

65+72+77+69+68=351
351%9=0 351%8=1

232%8=1

303%8=2

380%8=2

Ahmed

Yan

John

Viraj

04

05

06
07

01

02

Solution: Consistent Hashing

• Hashing function that reduces churn

• Addition or removal of one slot does not
significantly change mapping of keys to slots

• Good consistent hashing schemes change
mapping of K/N entries on single slot addition

– K: number of keys

– N: number of slots

• E.g., map keys and slots to positions on circle

– Assign keys to closest slot on circle

Solution: Consistent Hashing

• Slots have IDs selected randomly from [0,100]

• Hash keys onto same space, map key to closest bin

• Less churn on failure � more stable system

hashesfunction

Yan

John

Ahmed

Viraj

keys

Y A N
89+65+78=232
232%100=32

J O H N
74+79+72+78=303
303%100=3

V I R A J
86+73+82+65+74=380
380%100=80

A H M E D
65+72+77+69+68=351
351%100=51

04
08
26
27
35
41
47
65
70
81

Peer-to-peer networking

How did it start?

• A killer application: Napster (1999)

– Free music over the Internet

• Key idea: share storage and bandwidth
of individual (home) users

Model

• Each user stores a subset of files

• Each user has access (can download)
files from all users in the system

Relationship to DHTs and Overlays

• DHTs like Chord allow distributed object
storage

– Hosts can “put” and “get” objects

– Objects referenced by well-known key (e.g., hash
of file contents)

• However in unmanaged networks, hosts don’t
have incentive to store other’s objects

– I download files I want on my local host

– May be willing to share my files

Main challenge

• Find where file is stored

Other challenges

• Scale: up to millions of machines

• Dynamicity: machines can come and go
at any time

• P2P networks are
dynamic

Other challenges

• P2P networks are heterogeneous

Napster

• Assume a centralized index system that maps
files (songs) to machines that are alive

• How to find a file (song)
– Query the index system --> return a machine that
stores the required file
• Ideally this is the closest/least-loaded machine

– FTP the file

• Advantages
– Simplicity, easy to implement sophisticated search
engines on top of the index system

• Disadvantages:
– Robustness, scalability (?)

Napster example

The aftermath

• “Recording industry association of
America (RIAA) sues music startup
Napster for $20 Billion” – December 1999

• “Napster ordered to remove copyrighted
material” – March 2001

• Main legal argument:
– Napster owns the index system, so it is directly
responsible for disseminating copyrighted material

Gnutella (2000)

• Distribute file location

• Idea: broadcast the request

• How to find a file?
– Send request to all neighbors

– Neighbors recursively multicast the request

– Eventually a machines that has the file receives the request,
and it sends back the answer

• Advantages:
– Totally decentralized, highly robust

• Disadvantages:
– Not scalable; the entire network can be swamped with

requests (to alleviate this problem, each request has a TTL)

Gnutella: Example

• Assume: m1’s neighbors are m2 and
m3; m3’s neighbors are m4 and m5;…

Two-level hierarchy

• Current Gnutella
implementation, KaZaa

• Leaf nodes are connected to a
small number of ultrapeers
(supernodes)

• Query
– A leaf sends query to its ultrapeers

– If ultrapeers don’t know the
answer, they flood the query to
other ultrapeers

• More scalable:
– Flooding only among ultrapeers

Oct 2003 crawl
Of Gnutella

Skype (2003)

• Peer-to-peer Internet
telephony

• Two-level hierarchy
like KaZaa

• Ultrapeers used to
route traffic between
NATed end-hosts

• Plus a login server to
– Authenticate users
– Ensure that names
are unique across
network

BitTorrent (2001)

• Has become most common protocol for
transferring large files
– 27-55% of all Internet traffic
– Estimated 1.7 petabytes source content shared in
2008

• Model:
– Origin server wishes to distribute file (seed) to
other hosts (peers)

– Once multiple hosts have multiple pieces of the
file, they may become source for that part of the
file

– Once a host downloads the entire file, it may
become a new seed

BitTorrent (2001)

• Goal: allow fast downloads even when
sources have low up-link capacity

• How does it work?
– Seed (origin) – site storing the file to be
downloaded

– Tracker – server maintaining list of peers in
system

– Split each file into pieces (~256 KB each), and
each piece into sub-pieces (~16 KB each)

– The loader loads one piece at a time
– Within one piece, the loader can load up to five
sub-pieces in parallel

BitTorrent: Join Procedure

1. Peer contacts tracker responsible for file it wants to
download

2. Tracker returns a list of peers (20-50) downloading
the same file

3. Peer connects to peer in the list

BitTorrent: Download Algorithm

• Download consists of three phases
• Start: get a piece as soon as possible

– Select a random piece

• Middle: spread all pieces as soon as possible
– Select rarest piece next

• End: avoid getting stuck with a slow source
when downloading the last sub-pieces
– Request in parallel the same sub-piece
– Cancel slowest downloads once a sub-piece has
been received

• (For details see: http://bittorrent.org/bittorrentecon.pdf)

BitTorrent

• Benefits:

– Significant reduction in origin’s hardware
and bandwidth requirements

• Don’t need a big server farm to handle a flash
crowd

– Provides redundancy against outages

– Provides a temporary source, which is
harder to trace

BitTorrent Protocol

• To share a file, peer first creates a torrent
file, containing metadata about files to be
shared
– Checksum for each file “chunk” (which are typically
between 64KB and 4MB)

– URL of the tracker

– Names of files, their lengths, chunk length used

• Torrent files are then registered with a
tracker
– Maintains list of clients currently participating in torrent

– Alternatively, some clients use DHT in place of tracker

BitTorrent Protocol

BitTorrent

• Users browse the web to find a torrent
of interest, download and open with a
BitTorrent client

– Client then connects to trackers specified in
torrent file

– Receives list of peers currently transferring
file chunks

– Client then connects to peers to receive
the chunks it needs

Smart selection of chunks speeds
download

• Downloading in random order increases
opportunity to exchange data

• “tit-for-tat”, where clients prefer to send
data to clients that send data back to them
– Problem: two clients don’t share data because
neither takes the initiative

– Problem: when node first joins it may take some
time to gain a strong enough reputation to get
data from peers

• “optimistic unchoking”, where client
reserves part of its bandwidth to send chunks
to random peers

The BitTorrent Controversy

• Some groups object to bittorrent
– Content owners: significant number of torrents host

copyrighted material

– ISP networks: significant rise in BitTorrent network increases
congestion, harms performance for delay sensitive traffic

– Enterprise networks: BitTorrent often contacts 300-500
servers per second! Rapidly fills up NAT tables

• ISPs have begun rate-limiting BitTorrent
– So, BitTorrent clients began using headerencryption

– So, ISPs began to use “deep packet inspection” to look past
header

– � Arms race

Limitations of BitTorrent

• Lack of anonymity
– Possible to obtain IP addresses of clients from the tracker

• Leeching
– User may leave swarm after downloading without seeding

– Can block users that don’t upload much, but this harms dial-
up and asymmetric broadband users

• Speed
– Download speed limited by bandwidth of peers. Problem if

many peers are on asymmetric connections

• � Future clients and ongoing development may
rectify these limitations

Review: Content distribution

Robert

twitter.com

A
B

C D
11.1.0.1

11.1.8.7

23.2.0.1

81.2.0.1 4.5.16.2

4.18.5.1

4.9.0.1

IP address

Robert’s local
DNS server

Twitter’s authoritative
DNS server

.com authoritative
DNS sever

Review: Content distribution

11.1.0.1

11.1.8.7

23.2.0.1

81.2.0.1

4.5.16.2

4.18.5.1

