
Lecture 11:
Congestion Control

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

April 9, 2010

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 2

Today’s Topic: Vacations

UIUC

Chicago

Monterey

San Francisco

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Planning a vacation?
Try a trip to scenic Monterey, California!
Monterey is a mere 3 hops from UIUC.What

happened?

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 3

Congestion Control

reading: Peterson and Davie, Ch. 6

• Basics:
– Problem, terminology, approaches, metrics

• Solutions
– Router-based: queueing disciplines

– Host-based: TCP congestion control

• Congestion avoidance
– DECbit

– RED gateways

• Quality of service

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 4

Congestion Control Basics

• Problem

– Demand for network resources can grow beyond
the resources available

– Want to provide “fair” amount to each user

• Examples

– Bandwidth between Chicago and San Francisco

– Bandwidth in a network link

– Buffers in a queue

Congestion Collapse

• Definition

– Increase in network load results in decrease of useful work
done

• Many possible causes

– Spurious retransmissions of packets still in flight

• Classical congestion collapse

• Solution: better timers and TCP congestion control

– Undelivered packets

• Packets consume resources and are dropped elsewhere in
network

• Solution: congestion control for ALL traffic

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 5

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 6

Dealing with Congestion

• Range of solutions

– Congestion control

• Cure congestion when it happens

– Resource allocation

• Prevent congestion from occurring

• Model of network

– Packet-switched internetwork (or network)

– Connectionless flows (logical
channels/connections) between hosts

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 7

Congestion Control

• Goal

– Effective and fair allocation of resources among a
collection of competing users

– Learning when to say no and to whom

• Resources

– Bandwidth

– Buffers

• Problem

– Contention at routers causes packet loss

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 8

Flow Control vs. Congestion
Control

• Flow control

– Preventing senders from overrunning the
capacity of the receivers

• Congestion control

– Preventing too much data from being
injected into the network, causing
switches or links to become overloaded

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 9

Overview

10 Mbps Ethernet

100 Mbps FDDI

1.5 Mbps T1

Congestion cannot be controlled by routing alone

Need to limit traffic on bottleneck link

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 10

Basic Design Choices

• Prevention or Cure?
– Pre-allocate resources to avoid congestion
– Send data and control congestion if and when it

occurs

• Possible implementation points
– Hosts at the edge of the network

• Transport protocol

– Routers inside the network
• Queueing disciplines

• Underlying service model
– Best effort vs. quality of service (QoS)

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 11

Flows

• Sequence of packets sent between
source/destination pair
– Similar to end-to-end abstraction of channel, but seen at

routers

• Maintain per-flow soft state at the routers

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2

Router State

• Soft state:

– Information about flows

– Helps control congestion

– Not necessary for correct
routing

• Hard state:

– state used to support
routing

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 12

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 13

Congestion Control

• Router role
– Controls forwarding and dropping policies

– Can send feedback to source

• Host role
– Monitors network conditions

– Adjusts accordingly

• Routing vs. congestion
– Effective adaptive routing schemes

can sometimes help congestion

– But not always

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 14

Congestion Control Taxonomy

feedback-based

reservation-based,
implemented by routers,

controlled by rate,
a.k.a. quality of service/QoS

explicit feedback,
implemented by routers,
but not per flow…why?

implicit feedback,
implemented by hosts,
controlled by window

abstraction,
a.k.a. best effort

congestion control

Router-Centric vs. Host-Centric
Flow Control

• Router-centric

– Each router takes
responsibility for
deciding

• When packets are
forwarded

• Which packets are
to be dropped

• Informing hosts of
sending limitations

• Host-centric

– Hosts observe
network conditions
and adjust their
behavior
accordingly

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 15

Reservation-Based vs.
Feedback-Based Flow Control

• Reservation-based

– End host asks network
for capacity at flow
establishment time

– Routers along flow’s
route allocate
appropriate resources

– If resources are not
available, flow is
rejected

– Implies the use of
router-centric
mechanisms

• Feedback-based

– End host begins sending
without asking for
capacity

– End host adjusts
sending rate according
to feedback

• Explicit vs. implicit
feedback mechanisms

– May use router-centric
(explicit) or host-centric
(implicit) mechanisms

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 16

Per-flow Congestion Feedback

• Question

– Why is explicit per-flow congestion
feedback from routers rarely used in
practice?

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 17

Per-flow Congestion Feedback

• Problem

– Too many sources to track

• Millions of flows may fan in to one router

• Can’t send feedback to all of them

– Adds complexity to router

• Need to track more state

• Certainly can’t track state for all sources

– Wastes bandwidth: network already congested,
not the time to generate more traffic

– Can’t force the sources (hosts) to use feedback

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 18

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 19

Window-based vs. Rate-based
Flow Control

• Remember

– Given a RTT and window size W, long term throughput rate
is

• Rate = min(link speed, W/RTT)

• Since rate can be controlled by the window size, is
there really any difference between controlling the
window size and controlling the rate?

Rate

W

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 20

Rate Control

• Question
– Why consider rate control?

• Problems
– Buffer space (window size) is

an intrinsic physical quantity

– Can provide rate control with
window control

– Only need estimate of RTT

time

0 2 RTT1 RTT

window-controlled
transmissions

rate-controlled
transmissions

Answer
Want rate control
when granularity of
averaging must be
smaller than RTT

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 21

Criticisms of Resource Allocation

• Example

– Divide 10 Gbps bandwidth out of UIUC

• Case 1: reserve whatever you want

– Users’ line of thought

• On average, I don’t need much bandwidth, but when
my personal Web crawler goes to work, I need at least
100 Mbps, so I’ll reserve that much.

– Result

• 100 users consume all bandwidth, all others get 0

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 22

Criticisms of Resource Allocation

• Example

– Divide 10 Gbps bandwidth out of UIUC

• Case 2: fair/equitable reservations

– 35,000 students + 5,000 faculty and staff

– Each user gets 250 kbps, almost 5x a modem!

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 23

Resource Allocation

• Back to the air travel analogy

– Daily Chicago to San Francisco flight, 198 seats

– Case 1: reserve whatever you want

• 198 of us get seats. I’m Gold...are you?

– Case 2: fair/equitable reservations

• 2,000,000 possible customers

• 0.000099 seats per customer per flight

• Disclaimer:
the passenger assumes all risks and damages
related to unsuccessful reassembly in Chicago

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 24

Evaluation

• Fairness

• Power

– Ratio of throughput to delay

– Function of load on network

– Generally relative to a single flow

T
hr

ou
gh

pu
t/D

el
ay

LoadOptimal Load

idealized
power curve

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 25

Window Size

Source DestinationC

For non-random network with bottleneck capacity C:

Rate = Throughput

W

C

Delay

WRTT/2

Power = throughput/delay

W

RTT*C

Fairness

• Goals

– Allocate resources “fairly”

– Isolate ill-behaved users

– Still achieve statistical multiplexing
• One flow can fill entire pipe if no contenders

• Work conserving � scheduler never idles link if it has a
packet

• At what granularity?

– Flows, connections, domains?

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 26

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 27

What’s Fair?

Flow A

Flow B Flow C Flow D

This is the so-
called “max-min

fair” rate
allocation. The
minimum rate is

maximized.

Which is more fair:

Globally Fair: Fa = Capacity/4, Fb = Fc = Fd =
3Capacity/4

or

Locally Fair: Fa = Fb = Fc = Fd = Capacity/2

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 28

Max-Min Fairness

Flow A

Flow B Flow C Flow D

1. No user receives more than requested bandwidth
2. No other scheme with 1 has higher min bandwidth
3. 2 remains true recursively on removing minimal

user µI = MIN(µfair, ρi)

Queueing Disciplines

• Goal

– Decide how packets are buffered while waiting to
be transmitted

– Provide protection from ill-behaved flows

– Each router MUST implement some queuing
discipline regardless of what the resource
allocation mechanism is

• Impact

– Directly impacts buffer space usage

– Indirectly impacts flow control

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 29

Queueing Disciplines

• Allocate bandwidth

– Which packets get transmitted

• Allocate buffer space

– Which packets get discarded

• Affect packet latency

– When packets get transmitted

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 30

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 31

Scheduling Policies

• FIFO (First In First Out) a.k.a. FCFS (First Come First
Serve)
– Service

• In order of arrival to the queue

– Management
• Packets that arrive to a full buffer are discarded

• Another option: discard policy determines which packet to
discard (new arrival or something already queued)

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 32

Scheduling Policies

• FIFO
– Does not discriminate between traffic sources

– Congestion control left to the sources

– Tail drop dropping policy

– Fairness for latency

– Minimizes per-packet delay

– Bandwidth not considered (not good for congestion)

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 33

Scheduling Policies

• Priority Queuing

– Classes have different priorities

• May depend on explicit marking or other header info

– e.g., IP source or destination, TCP Port numbers, etc.

– Service

• Transmit packet from highest priority class with a non-empty
queue

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 34

Scheduling Policies

• Priority Queueing Versions

– Preemptive

• Postpone low-priority processing if high-priority packet
arrives

– Non-preemptive

• Any packet that starts getting processed finishes before
moving on

• Limitation

– May starve lower priority flows

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 35

Scheduling Policies

• Round Robin

– Each flow gets its own queue

– Circulate through queues, process one packet (if
queue non-empty), then move to next queue

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 36

Scheduling Policies

• Fair Queueing (FQ)

– Explicitly segregates
traffic based on flows

– Ensures no flow
captures more than its
share of the capacity

– Fairness for bandwidth

– Delay not considered

Flow 1

Flow 2

Flow 3

Flow 4

Round-
Robin

service

Each flow is guaranteed ¼
of capacity

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 37

Fair Queueing with Variable
Packet Length

• How should we implement FQ if packets are not all
the same length?

– Bit-by-bit round-robin

• Not feasible to implement, must use packet scheduling

• Solution: approximate

4 8

6 10

44 4 5

?

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 38

Fair Queueing with Variable
Packet Length

• Idea
– Let Si = amount of service flow i has received so far

– Always serve a flow with minimum value of Si
• Can also use minimum (Si + next packet length)

– Upon serving a packet of length P from flow i, update:
• Si = Si + P

• Never leave the link idle if there is a packet to send
– Work conserving

• A source will gets its fair share of the bandwidth

• Unused bandwidth will be evenly divided between other
sources

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 39

Fair Queueing with Variable
Packet Length

• Problem
– A flow resumes sending packets after being quite for a long

time

• Effect
– Such a flow could be considered to have “saved up credit”

– Can lock out all other flows until credits are level again

• Solution
– Enforce “use it or lose it policy”

• Compute Smin = min(Si such that queue i is not empty)

• If queue j is empty, set Sj = Smin

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 40

Fair Queueing with Variable
Packet Length

• Problem
– A flow resumes sending packets after being quite for a long

time

• Effect
– Such a flow could be considered to have “saved up credit”

– Can lock out all other flows until credits are level again

• Solution
– Enforce “use it or lose it policy”

• Compute Smin = min(Si such that queue i is not empty)

• If queue j is empty, set Sj = Smin

Note:
The text book computes

F = MAX(Fi-1, Ai) = Pi

And then for multiple flows
• Calculate Fi for each packet

that arrives on each flow
• Treat all Fi as timestamps
• Next packet to transmit is one

with lowest timestamp

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 41

Extension: Weighted Fair
Queueing

• Extend fair queueing

– Notion of importance for each flow

• Suppose flow i has weight wi

– Example: wi could be the fraction of total
service that flow i is targeted for

• Need only change basic update to

– Si = Si + P/wi

Fair Queuing Tradeoffs

• FQ can control congestion by monitoring flows

– Non-adaptive flows can still be a problem – why?

• Complex state

– Must keep queue per flow

• Hard in routers with many flows (e.g., backbone routers)

• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation

– Classification into flows may be hard

– Must keep queues sorted by finish times

– Changes whenever the flow count changes

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 42

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 43

Fair Queueing

• Question
– What makes up a flow for fair queueing in the

Internet?

• Considerations

– Too many resources to have separate
queues/variables for host-to-host flows

– Scale down number of flows

– Typically just based on inputs

• e.g., share outgoing STS-12 between incoming ISP’s

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 44

TCP Congestion Control

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 45

Host Solutions

• Host has very little information
– Assumes best-effort network

– Acts independently of other hosts

• Host infers congestion
– From synchronization feedback (e.g., dropped packet

timeouts, duplicate ACK’s)

– Loss on wired lines rarely due to transmission error

• Host acts
– Reduce transmission rate below congestion threshold

– Continuously monitor network for signs of congestion

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 46

TCP Congestion Control

• Idea
– Assumes best-effort network

• FIFO or FQ

– Each source determines network capacity for
itself

– Implicit feedback
– ACKs pace transmission (self-clocking)

• Challenge
– Determining initial available capacity
– Adjusting to changes in capacity in a timely

manner

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 47

TCP Congestion Control

• Basic idea

– Add notion of congestion window

– Effective window is smaller of

• Advertised window (flow control)

• Congestion window (congestion control)

– Changes in congestion window size

• Slow increases to absorb new bandwidth

• Quick decreases to eliminate congestion

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 48

TCP Congestion Control

• Specific strategy
– Self-clocking

• Send data only when outstanding data ACK’d

• Equivalent to send window limitation mentioned

receiversender

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 49

TCP Congestion Control

• Specific strategy
– Self-clocking

• Send data only when outstanding data ACK’d

• Equivalent to send window limitation mentioned

– Growth
• Add one maximum segment size (MSS) per congestion

window of data ACK’d

• It’s really done this way, at least in Linux:
– see tcp_cong_avoid in tcp_input.c.

– Actually, every ack for new data is treated as an MSS
ACK’d

• Known as additive increase

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 50

TCP Congestion Control

• Specific strategy (continued)

– Decrease

• Cut window in half when timeout occurs

• In practice, set window = window /2

• Known as multiplicative decrease

– Additive increase, multiplicative decrease
(AIMD)

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 51

Additive Increase/ Multiplicative
Decrease

• Objective
– Adjust to changes in available capacity

• Tools
– React to observance of congestion

– Probe channel to detect more resources

• Observation
– On notice of congestion

• Decreasing too slowly will not be reactive enough

– On probe of network
• Increasing too quickly will overshoot limits

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 52

Additive Increase/ Multiplicative
Decrease

• New TCP state variable
– CongestionWindow

• Similar to AdvertisedWindow for flow control

– Limits how much data source can have in transit
• MaxWin = MIN(CongestionWindow,

AdvertisedWindow)
• EffWin = MaxWin - (LastByteSent -

LastByteAcked)
• TCP can send no faster then the slowest component, network

or destination

• Idea
– Increase CongestionWindow when congestion goes

down
– Decrease CongestionWindow when congestion goes up

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 53

Additive Increase/ Multiplicative
Decrease

• Question

– How does the source determine whether or not
the network is congested?

• Answer

– Timeout signals packet loss

– Packet loss is rarely due to transmission error (on
wired lines)

– Lost packet implies congestion!

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 54

Additive Increase/ Multiplicative
Decrease

• Algorithm

– Increment CongestionWindow by one packet
per RTT

• Linear increase

– Divide CongestionWindow by two whenever a
timeout occurs

• Multiplicative decrease

• In practice

– increment a little for each ACK

Inc = MSS * MSS/CongestionWindow

CongestionWindow += Inc

Source Destination

…

AIMD – Sawtooth Trace

• Packet loss is seen as sign of congestion and results
in a multiplicative rate decrease

– Factor of 2

• TCP periodically probes for available bandwidth by
increasing its rate

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 55

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30
40
50

10

10.0

Why is AIMD Fair?

• Two competing sessions

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 56

Efficiency Line

Fairness Line

User 1’s Allocation

User 2’s
Allocation Optimal point

Overload

Underutilization

Additive Increase/Decrease

• Both increase/ decrease by the same amount

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 57

User 1’s Allocation

User 2’s
Allocation

Overload

Underutilization

T0

T1

� Additive increase
improves fairness

� Additive decrease
reduces fairness

Muliplicative Increase/Decrease

• Both increase/ decrease by the same amount

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 58

User 1’s Allocation

User 2’s
Allocation

Overload

Underutilization

� Additive increase
improves fairness

� Additive decrease
reduces fairness

T0

T1

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 59

Why is AIMD Fair?

• Additive increase gives slope of 1, as throughout increases

• Multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

User 1’s Allocation

U
se

r
2’

s
A

l lo
ca

ti
o

n

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 60

TCP Start Up Behavior

• How should TCP start sending data?

– AIMD is good for channels operating at
capacity

– AIMD can take a long time to ramp up to
full capacity from scratch

– Use Slow Start to increase window rapidly
from a cold start

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 61

TCP Start Up Behavior

• Initialization of the congestion window

– Congestion window should start small

– Avoid congestion due to new connections

– Start at 1 MSS, reset to 1 MSS with each
timeout (note that timeouts are coarse-
grained, ~1/2 sec)

– Known as slow start

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 62

Slow Start

• Objective
– Determine initial available capacity

• Idea
– Begin with CongestionWindow = 1

packet
– Double CongestionWindow each RTT

• Increment by 1 packet for each ACK

– Continue increasing until loss

Source Destination

…

Slow Start Example

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 63

1

one pkt time

0R

2

1R

3

4

2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

Slow Start

• Result

– Exponential growth

– Slower than all at once

• Used

– When first starting connection

– When connection times out

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 64

TCP Congestion Control

• Maintain threshold window size

– Threshold value

• Initially set to maximum window size

• Set to 1/2 of current window on timeout

– Use multiplicative increase

• When congestion window when smaller than threshold

• Double window for each window ACK’d

• In practice

– Increase congestion window by one MSS for each ACK of
new data (or N bytes for N bytes)

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 65

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 66

Slow Start

• How long should the exponential
increase from slow start
continue?

– Use CongestionThreshold as
target window size

– Estimates network capacity

– When CongestionWindow
reaches
CongestionThreshold switch

to additive increase

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 67

Slow Start

• Initial values

– CongestionThreshold = 8

– CongestionWindow = 1

• Loss after transmission 7

– CongestionWindow currently 12

– Set Congestionthreshold =
CongestionWindow/2

– Set CongestionWindow = 1

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 68

Slow Start

• Example trace of CongestionWindow

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

� Problem
� Have to wait for timeout
� Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 69

Fast Retransmit and Fast
Recovery

• Problem

– Coarse-grain TCP
timeouts lead to idle
periods

• Solution

– Fast retransmit: use
duplicate ACKs to
trigger
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 70

Fast Retransmit and Fast
Recovery

• Send ACK for each segment received

• When duplicate ACK’s received
– Resend lost segment immediately

– Do not wait for timeout

– In practice, retransmit on 3rd duplicate

• Fast recovery
– When fast retransmission occurs, skip slow start

– Congestion window becomes 1/2 previous

– Start additive increase immediately

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 71

Fast Retransmit and Fast
Recovery

• Results

� Fast Recovery
� Bypass slow start phase
� Increase immediately to one half last successful
CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 72

TCP Congestion Window Trace

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time

C
on

ge
st

io
n

W
in

do
w

threshold

congestion
windowtimeouts

slow start period

additive increase

fast retransmission

