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Today’s Topic: Vacations

UIUC

Chicago

Monterey

San Francisco

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Sorry,
FLIGHT

OVERBOOKED.
Please fly again!

Planning a vacation?
Try a trip to scenic Monterey, California!
Monterey is a mere 3 hops from UIUC.What

happened?
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Congestion Control

reading: Peterson and Davie, Ch. 6

• Basics: 
– Problem, terminology, approaches, metrics

• Solutions
– Router-based: queueing disciplines

– Host-based: TCP congestion control

• Congestion avoidance
– DECbit

– RED gateways

• Quality of service
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Congestion Control Basics

• Problem

– Demand for network resources can grow beyond 
the resources available

– Want to provide “fair” amount to each user

• Examples

– Bandwidth between Chicago and San Francisco

– Bandwidth in a network link

– Buffers in a queue



Congestion Collapse

• Definition

– Increase in network load results in decrease of useful work 
done

• Many possible causes

– Spurious retransmissions of packets still in flight

• Classical congestion collapse

• Solution: better timers and TCP congestion control

– Undelivered packets

• Packets consume resources and are dropped elsewhere in 
network

• Solution: congestion control for ALL traffic
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Dealing with Congestion

• Range of solutions 

– Congestion control

• Cure congestion when it happens

– Resource allocation

• Prevent congestion from occurring

• Model of network

– Packet-switched internetwork (or network)

– Connectionless flows (logical 
channels/connections) between hosts
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Congestion Control

• Goal

– Effective and fair allocation of resources among a 
collection of competing users

– Learning when to say no and to whom

• Resources

– Bandwidth

– Buffers

• Problem

– Contention at routers causes packet loss
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Flow Control vs. Congestion 
Control

• Flow control

– Preventing senders from overrunning the 
capacity of the receivers

• Congestion control

– Preventing too much data from being 
injected into the network, causing 
switches or links to become overloaded
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Overview

10 Mbps Ethernet

100 Mbps FDDI

1.5 Mbps T1

Congestion cannot be controlled by routing alone

Need to limit traffic on bottleneck link
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Basic Design Choices

• Prevention or Cure?
– Pre-allocate resources to avoid congestion
– Send data and control congestion if and when it 

occurs

• Possible implementation points
– Hosts at the edge of the network 

• Transport protocol

– Routers inside the network
• Queueing disciplines

• Underlying service model
– Best effort vs. quality of service (QoS)
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Flows

• Sequence of packets sent between 
source/destination pair
– Similar to end-to-end abstraction of channel, but seen at 

routers

• Maintain per-flow soft state at the routers

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2



Router State

• Soft state: 

– Information about flows

– Helps control congestion

– Not necessary for correct 
routing

• Hard state:

– state used to support 
routing
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Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2
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Congestion Control

• Router role
– Controls forwarding and dropping policies

– Can send feedback to source

• Host role
– Monitors network conditions

– Adjusts accordingly

• Routing vs. congestion
– Effective adaptive routing schemes

can sometimes help congestion

– But not always
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Congestion Control Taxonomy

feedback-based

reservation-based,
implemented by routers,

controlled by rate,
a.k.a. quality of service/QoS

explicit feedback,
implemented by routers,
but not per flow…why?

implicit feedback,
implemented by hosts,
controlled by window

abstraction,
a.k.a. best effort

congestion control



Router-Centric vs. Host-Centric 
Flow Control

• Router-centric

– Each router takes 
responsibility for 
deciding 

• When packets are 
forwarded

• Which packets are 
to be dropped

• Informing hosts of 
sending limitations

• Host-centric

– Hosts observe 
network conditions 
and adjust their 
behavior 
accordingly
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Reservation-Based vs. 
Feedback-Based Flow Control

• Reservation-based

– End host asks network 
for capacity at flow 
establishment time

– Routers along flow’s 
route allocate 
appropriate resources

– If resources are not 
available, flow is 
rejected

– Implies the use of 
router-centric 
mechanisms

• Feedback-based

– End host begins sending 
without asking for 
capacity

– End host adjusts 
sending rate according 
to feedback

• Explicit vs. implicit 
feedback mechanisms

– May use router-centric 
(explicit) or host-centric 
(implicit) mechanisms
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Per-flow Congestion Feedback 

• Question

– Why is explicit per-flow congestion 
feedback from routers rarely used in 
practice?
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Per-flow Congestion Feedback 

• Problem

– Too many sources to track

• Millions of flows may fan in to one router

• Can’t send feedback to all of them

– Adds complexity to router

• Need to track more state

• Certainly can’t track state for all sources

– Wastes bandwidth: network already congested,
not the time to generate more traffic

– Can’t force the sources (hosts) to use feedback
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Window-based vs. Rate-based 
Flow Control

• Remember

– Given a RTT and window size W, long term throughput rate 
is 

• Rate = min(link speed, W/RTT)

• Since rate can be controlled by the window size, is 
there really any difference between controlling the 
window size and controlling the rate?

Rate

W
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Rate Control

• Question
– Why consider rate control?

• Problems
– Buffer space (window size) is

an intrinsic physical quantity

– Can provide rate control with 
window control

– Only need estimate of RTT

time

0 2 RTT1 RTT

window-controlled
transmissions

rate-controlled
transmissions

Answer
Want rate control 
when granularity of 
averaging must be 
smaller than RTT
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Criticisms of Resource Allocation

• Example

– Divide 10 Gbps bandwidth out of UIUC

• Case 1: reserve whatever you want

– Users’ line of thought

• On average, I don’t need much bandwidth, but when 
my personal Web crawler goes to work, I need at least 
100 Mbps, so I’ll reserve that much.

– Result

• 100 users consume all bandwidth, all others get 0
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Criticisms of Resource Allocation

• Example

– Divide 10 Gbps bandwidth out of UIUC

• Case 2: fair/equitable reservations

– 35,000 students + 5,000 faculty and staff

– Each user gets 250 kbps, almost 5x a modem!
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Resource Allocation

• Back to the air travel analogy

– Daily Chicago to San Francisco flight, 198 seats

– Case 1: reserve whatever you want

• 198 of us get seats.  I’m Gold...are you?

– Case 2: fair/equitable reservations

• 2,000,000 possible customers

• 0.000099 seats per customer per flight

• Disclaimer: 
the passenger assumes all risks and damages
related to unsuccessful reassembly in Chicago
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Evaluation

• Fairness

• Power 

– Ratio of throughput to delay

– Function of load on network

– Generally relative to a single flow

T
hr

ou
gh

pu
t/D

el
ay

LoadOptimal Load

idealized
power curve
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Window Size

Source DestinationC

For non-random network with bottleneck capacity C:

Rate = Throughput

W

C

Delay

WRTT/2

Power = throughput/delay

W

RTT*C



Fairness

• Goals

– Allocate resources “fairly”

– Isolate ill-behaved users

– Still achieve statistical multiplexing
• One flow can fill entire pipe if no contenders

• Work conserving � scheduler never idles link if it has a 
packet

• At what granularity?

– Flows, connections, domains?
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What’s Fair?

Flow A

Flow B Flow C Flow D

This is the so-
called “max-min 

fair” rate 
allocation.  The 
minimum rate is 

maximized.

Which is more fair:

Globally Fair: Fa = Capacity/4, Fb = Fc = Fd = 
3Capacity/4

or

Locally Fair: Fa = Fb = Fc = Fd = Capacity/2
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Max-Min Fairness

Flow A

Flow B Flow C Flow D

1. No user receives more than requested bandwidth
2. No other scheme with 1 has higher min bandwidth
3. 2 remains true recursively on removing minimal 

user µI = MIN(µfair, ρi)



Queueing Disciplines

• Goal

– Decide how packets are buffered while waiting to 
be transmitted

– Provide protection from ill-behaved flows

– Each router MUST implement some queuing 
discipline regardless of what the resource 
allocation mechanism is

• Impact

– Directly impacts buffer space usage

– Indirectly impacts flow control
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Queueing Disciplines

• Allocate bandwidth

– Which packets get transmitted

• Allocate buffer space

– Which packets get discarded

• Affect packet latency

– When packets get transmitted
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Scheduling Policies

• FIFO (First In First Out) a.k.a. FCFS (First Come First 
Serve)
– Service

• In order of arrival to the queue

– Management
• Packets that arrive to a full buffer are discarded

• Another option: discard policy determines which packet to 
discard (new arrival or something already queued)
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Scheduling Policies

• FIFO
– Does not discriminate between traffic sources

– Congestion control left to the sources

– Tail drop dropping policy

– Fairness for latency

– Minimizes per-packet delay

– Bandwidth not considered (not good for congestion)
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Scheduling Policies

• Priority Queuing

– Classes have different priorities

• May depend on explicit marking or other header info

– e.g., IP source or destination, TCP Port numbers, etc.

– Service

• Transmit packet from highest priority class with a non-empty 
queue
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Scheduling Policies

• Priority Queueing Versions

– Preemptive

• Postpone low-priority processing if high-priority packet 
arrives

– Non-preemptive

• Any packet that starts getting processed finishes before 
moving on

• Limitation

– May starve lower priority flows
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Scheduling Policies

• Round Robin

– Each flow gets its own queue

– Circulate through queues, process one packet (if 
queue non-empty), then move to next queue
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Scheduling Policies

• Fair Queueing (FQ)

– Explicitly segregates 
traffic based on flows

– Ensures no flow 
captures more than its 
share of the capacity

– Fairness for bandwidth

– Delay not considered

Flow 1

Flow 2

Flow 3

Flow 4

Round-
Robin 

service

Each flow is guaranteed ¼
of capacity
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Fair Queueing with Variable 
Packet Length

• How should we implement FQ if packets are not all 
the same length?

– Bit-by-bit round-robin

• Not feasible to implement, must use packet scheduling

• Solution: approximate

4 8

6 10

44 4 5

?
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Fair Queueing with Variable 
Packet Length

• Idea
– Let Si = amount of service flow i has received so far

– Always serve a flow with minimum value of Si
• Can also use minimum (Si + next packet length)

– Upon serving a packet of length P from flow i, update:
• Si = Si + P

• Never leave the link idle if there is a packet to send
– Work conserving

• A source will gets its fair share of the bandwidth

• Unused bandwidth will be evenly divided between other 
sources
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Fair Queueing with Variable 
Packet Length

• Problem
– A flow resumes sending packets after being quite for a long 

time

• Effect
– Such a flow could be considered to have “saved up credit”

– Can lock out all other flows until credits are level again

• Solution 
– Enforce “use it or lose it policy”

• Compute Smin = min(Si such that queue i is not empty)

• If queue j is empty, set Sj = Smin
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Fair Queueing with Variable 
Packet Length

• Problem
– A flow resumes sending packets after being quite for a long 

time

• Effect
– Such a flow could be considered to have “saved up credit”

– Can lock out all other flows until credits are level again

• Solution 
– Enforce “use it or lose it policy”

• Compute Smin = min(Si such that queue i is not empty)

• If queue j is empty, set Sj = Smin

Note:
The text book computes

F = MAX(Fi-1, Ai) = Pi

And then for multiple flows
• Calculate Fi for each packet 

that arrives on each flow
• Treat all Fi as timestamps
• Next packet to transmit is one 

with lowest timestamp
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Extension: Weighted Fair 
Queueing

• Extend fair queueing 

– Notion of importance for each flow

• Suppose flow i has weight wi

– Example: wi could be the fraction of total 
service that flow i is targeted for

• Need only change basic update to 

– Si = Si + P/wi



Fair Queuing Tradeoffs

• FQ can control congestion by monitoring flows

– Non-adaptive flows can still be a problem – why?

• Complex state

– Must keep queue per flow

• Hard in routers with many flows (e.g., backbone routers)

• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation

– Classification into flows may be hard

– Must keep queues sorted by finish times

– Changes whenever the flow count changes
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Fair Queueing

• Question
– What makes up a flow for fair queueing in the 

Internet?

• Considerations

– Too many resources to have separate 
queues/variables for host-to-host flows

– Scale down number of flows

– Typically just based on inputs

• e.g., share outgoing STS-12 between incoming ISP’s
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TCP Congestion Control
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Host Solutions

• Host has very little information
– Assumes  best-effort network

– Acts independently of other hosts

• Host infers congestion
– From synchronization feedback (e.g., dropped packet 

timeouts, duplicate ACK’s)

– Loss on wired lines rarely due to transmission error

• Host acts
– Reduce transmission rate below congestion threshold

– Continuously monitor network for signs of congestion
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TCP Congestion Control

• Idea
– Assumes best-effort network 

• FIFO or FQ

– Each source determines network capacity for 
itself

– Implicit feedback
– ACKs pace transmission (self-clocking)

• Challenge
– Determining initial available capacity
– Adjusting to changes in capacity in a timely 

manner
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TCP Congestion Control

• Basic idea

– Add notion of congestion window

– Effective window is smaller of

• Advertised window (flow control)

• Congestion window (congestion control)

– Changes in congestion window size

• Slow increases to absorb new bandwidth

• Quick decreases to eliminate congestion
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TCP Congestion Control

• Specific strategy
– Self-clocking

• Send data only when outstanding data ACK’d

• Equivalent to send window limitation mentioned

receiversender
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TCP Congestion Control

• Specific strategy
– Self-clocking

• Send data only when outstanding data ACK’d

• Equivalent to send window limitation mentioned

– Growth
• Add one maximum segment size (MSS) per congestion 

window of data ACK’d

• It’s really done this way, at least in Linux:
– see tcp_cong_avoid in tcp_input.c.  

– Actually, every ack for new data is treated as an MSS 
ACK’d

• Known as additive increase
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TCP Congestion Control

• Specific strategy (continued)

– Decrease

• Cut window in half when timeout occurs

• In practice, set window = window /2 

• Known as multiplicative decrease

– Additive increase, multiplicative decrease 
(AIMD)
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Additive Increase/ Multiplicative 
Decrease

• Objective
– Adjust to changes in available capacity

• Tools
– React to observance of congestion

– Probe channel to detect more resources

• Observation
– On notice of congestion

• Decreasing too slowly will not be reactive enough

– On probe of network
• Increasing too quickly will overshoot limits
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Additive Increase/ Multiplicative 
Decrease

• New TCP state variable
– CongestionWindow

• Similar to AdvertisedWindow for flow control

– Limits how much data source can have in transit
• MaxWin = MIN(CongestionWindow, 

AdvertisedWindow)
• EffWin = MaxWin - (LastByteSent -

LastByteAcked)
• TCP can send no faster then the slowest component, network 

or destination

• Idea
– Increase CongestionWindow when congestion goes 

down
– Decrease CongestionWindow when congestion goes up
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Additive Increase/ Multiplicative 
Decrease

• Question

– How does the source determine whether or not 
the network is congested?

• Answer

– Timeout signals packet loss

– Packet loss is rarely due to transmission error (on 
wired lines)

– Lost packet implies congestion!
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Additive Increase/ Multiplicative 
Decrease

• Algorithm

– Increment CongestionWindow by one packet 
per RTT 

• Linear increase

– Divide CongestionWindow by two whenever a 
timeout occurs

• Multiplicative decrease

• In practice

– increment a little for each ACK

Inc = MSS * MSS/CongestionWindow

CongestionWindow += Inc

Source Destination

…



AIMD – Sawtooth Trace

• Packet loss is seen as sign of congestion and results 
in a multiplicative rate decrease 

– Factor of 2

• TCP periodically probes for available bandwidth by 
increasing its rate
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Why is AIMD Fair?

• Two competing sessions
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Efficiency Line

Fairness Line

User 1’s Allocation

User 2’s 
Allocation Optimal point

Overload

Underutilization



Additive Increase/Decrease

• Both increase/ decrease by the same amount
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User 1’s Allocation

User 2’s 
Allocation

Overload

Underutilization

T0

T1

� Additive increase 
improves fairness

� Additive decrease 
reduces fairness



Muliplicative Increase/Decrease

• Both increase/ decrease by the same amount
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User 1’s Allocation

User 2’s 
Allocation

Overload

Underutilization

� Additive increase 
improves fairness

� Additive decrease 
reduces fairness

T0

T1
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Why is AIMD Fair?

• Additive increase gives slope of 1, as throughout increases

• Multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

User 1’s Allocation

U
se

r 
2’

s 
A

l lo
ca

ti
o

n

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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TCP Start Up Behavior

• How should TCP start sending data?

– AIMD is good for channels operating at 
capacity

– AIMD can take a long time to ramp up to 
full capacity from scratch

– Use Slow Start to increase window rapidly 
from a cold start
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TCP Start Up Behavior

• Initialization of the congestion window

– Congestion  window should start small

– Avoid congestion due to new connections

– Start at 1 MSS, reset to 1 MSS with each 
timeout (note that timeouts are coarse-
grained, ~1/2 sec)

– Known as slow start
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Slow Start

• Objective
– Determine initial available capacity

• Idea
– Begin with CongestionWindow = 1 

packet
– Double CongestionWindow each RTT

• Increment by 1 packet for each ACK

– Continue increasing until loss

Source Destination

…



Slow Start Example
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Slow Start

• Result

– Exponential growth

– Slower than all at once

• Used

– When first starting connection

– When connection times out
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TCP Congestion Control

• Maintain threshold window size

– Threshold value

• Initially set to maximum window size

• Set to 1/2 of current window on timeout

– Use multiplicative increase

• When congestion window when smaller than threshold

• Double window for each window ACK’d

• In practice

– Increase congestion window by one MSS for each ACK of 
new data (or N bytes for N bytes)
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Slow Start

• How long should the exponential 
increase from slow start 
continue?

– Use CongestionThreshold as 
target window size

– Estimates network capacity

– When CongestionWindow 
reaches
CongestionThreshold switch 

to additive increase
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Slow Start

• Initial values

– CongestionThreshold = 8

– CongestionWindow = 1

• Loss after transmission 7

– CongestionWindow currently 12

– Set Congestionthreshold = 
CongestionWindow/2

– Set CongestionWindow = 1
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Slow Start

• Example trace of CongestionWindow
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� Problem
� Have to wait for timeout
� Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1
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Fast Retransmit and Fast 
Recovery

• Problem

– Coarse-grain TCP 
timeouts lead to idle 
periods

• Solution

– Fast retransmit: use 
duplicate ACKs to 
trigger 
retransmission

Packet 1
Packet 2
Packet 3
Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver
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Fast Retransmit and Fast 
Recovery

• Send ACK for each segment received

• When duplicate ACK’s received
– Resend lost segment immediately

– Do not wait for timeout

– In practice, retransmit on 3rd duplicate

• Fast recovery
– When fast retransmission occurs, skip slow start

– Congestion window becomes 1/2 previous

– Start additive increase immediately
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Fast Retransmit and Fast 
Recovery

• Results

� Fast Recovery
� Bypass slow start phase
� Increase immediately to one half last successful 
CongestionWindow (ssthresh)
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TCP Congestion Window Trace
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