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The Big(ger) Picture

application : 428/598 topics
end-to-end : detailed description of issues here
P most coverage \
data link/physical until now

performance <= congestion control
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Where are you?

Understand how to

Build a network on one physical medium
Connect networks

Implement a reliable byte stream
Address network heterogeneity

Address global scale

Final part of class

End-to-end issues and common protocols

Congestion control: TCP heuristics, switch/router
approaches to fairness

Performance analysis
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End-to-End Protocols

End-to-end Service Model

Protocol Examples

User Datagram Protocol (UDP)
Transmission Control Protocol (TCP)
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End-to-End Service Model

e User perspective of network
— Knowledge of required functionality
— Implementation is hidden

e [Focus
— Enable communication between applications
— Translate from host-to-host protocols

e Services
— Services that cannot be implemented in lower layers (hop-
by-hop basis)
— Avoid duplicate effort
— Services not needed by all applications
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End-to-End Service Model

e Build on “best effort” service provided
by network layer (IP)

— Messages sent from a host are delivered
to another host

e May
e May
e May
e May
e May
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be lost

be reordered

be delivered multiple times
be limited to a finite size

pe delivered after a long delay
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End-to-End Service Model

Support services needed by the application
Multiple connections per host
Guaranteed delivery

Messages C

Messages C
No limit on

elivered in the order they were sent
elivered at most once
message size

Synchronization between sender and receiver
Flow control
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End-to-End Service Model

e Challenge

— @Given

e Less than desirable properties of the underlying
network

— Create
o High-level services required by applications
e Services
— Asynchronous demultiplexing service
— Reliable byte-stream service
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User Datagram Protocol (UDP)

e Simple connectionless ¢ Multiplexing

demultiplexer —  16-bit port numbers
— No handshaking —  Well-known ports
— Each segment handled e Checksum
independently — Validate header
* Service Model —  Optional in IPv4
— Thin veneer over IP — Mandatory in IPv6
services

— Unreliable unordered
datagram service

— Addresses multiplexing
of multiple connections
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User Datagram Protocol (UDP)

Why is there a UDP?
— No connection
establishment
e Low delay
— Simple

e No connection state at
sender, receiver

— Small header

— No congestion control

e UDP can blast away as
fast as desired

What kind of applications is

UDP good for?

—  Streaming multimedia
apps

—  Loss tolerant

— Rate sensitive

Other UDP uses

— DNS, SNMP

Reliable transfer over UDP

— At application layer

— Application-specific error
recovery
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UDP Header Format

0 8 6 31
Source Port Destination Port
UDP Length UDP Checksum
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UDP

Header Format

0 8 6 31
Source Port Destination Port
UDP Length UDP Checksum

e 16-bit source and destination ports

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

12



UDP

Q 8

Header Format

Source Port

Destination Port

UDP Length

UDP Checksum

e Length includes 8-byte header and

data
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UDP

8

Header Format

31

Source Port

Destination Port

UDP Length

UDP Checksum

e Checksum
e Uses IP checksum algorithm

— Computed on header, data and pseudo header

17 (UDP) UDP Length
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UDP

8

Header Format

31

Source Port

Destination Port

UDP Length

UDP Checksum

Checksum

— What purpose does the checksum serve?

— Why is it mandatory when using IPv6?

17 (UDP) UDP Length
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Transmission Control Protocol
(TCP)

Reliable byte stream e Multiplexing
Service model —  Equivalent to UDP
—  Multiple connections per e Checksum

host —  Equivalent to UDP
— Guaranteed delivery —  Mandatory

— Messages delivered in the
order they were sent

— Messages delivered at
most once

— No limit on message size

— Synchronization between
sender and receiver

—  Flow control
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TCP

e (Connection oriented
— Explicit setup and teardown required

e Full duplex
— Data flows in both directions simultaneously
— Point-to-point connection

e Byte stream abstraction
— No boundaries in data

— App writes bytes, TCP send segments, App
receives bytes
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TCP

Rate control

— Flow control to restrict sender rate to something
manageable by receiver

— Congestion control to restrict sender to
something manageable by network

— Both need to handle the presence of other traffic
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TCP Outline

TCP vs. Sliding window on a direct link
Usage model

Segment header format and options
States and state diagram

Sliding window implementation details
Flow control issues

Bit allocation limitations

Adaptive retransmission algorithms
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TCP vs. Direct Link

Explicit connection setup required
— Dialup vs. dedicated line

RTT varies

— Among peers (host at other end of connection)

— Qver time

— Requires adaptive approach to retransmission (and window
size)

Packets

— Delayed

— Reordered

— Late
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TCP vs. Direct Link

Peer capabilities vary

— Minimum link speed on route

— Buffering capacity at destination

— Requires adaptive approach to window sizes

Network capacity varies
— Other traffic competes for most links
— Requires global congestion control strategy

Question

— Why not implement more functionality (reliability, ordering,
congestion control) in IP?
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Proposal:
Reliable Network Layer

Service

— High probabilistic guarantee of correct, in order data
transmission at the network layer

— Hop-by hop network layer ACKs

Is this sufficient?

No

— Routers may crash, buffers may overflow

Is it beneficial?
— Maybe, depends on link’s error rate
— Improve performance, not provide correctness
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The End-to-End Argument

Lower layer functions

— May be redundant or of little value when compared with
providing them at that low layer

Functionality

— Implemented at a lower layer iff it can be correctly and
completely implemented there

Real constraint

— Implementing functionality at a lower level should have
minimum performance impact on applications that do not

use the functionality
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End-to-End Argument

e In-order delivery
— hop-by-hop ordering guarantee is not robust to path
changes or multiple paths
e (Congestion control
— Should be stopped at source
— But network can provide feedback

100Mbps b 1Mbps
S
N P —= green should get 9Mbps,
but gets only 5Mbps with
5Mbps hop-by-hop drops

100Mbps 100Mbps
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TCP Usage Model

Connection setup
— 3-way handshake

Data transport

— Sender writes data
- TCP
e Breaks data into segments
e Sends each segment over IP
e Retransmits, reorders and removes duplicates as necessary
— Receiver reads some data
Teardown

— 4 step exchange
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TCP Connection Establishment

3-Way Handshake

Sequence Numbers

* JK Client Server
Message Types Sy o
e Synchronize (SYN) W
e Acknowledge (ACK)
Passive Open SYN K)x o) 3+
e Server listens for connection ac\mo\w\ed‘?'e
from client
Active Open A
e C(lient initiates connection to %
server

Time flows down
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TCP Data Transport

Data broken into segments

Limited by maximum segment size (MSS)
Defaults to 352 bytes
Negotiable during connection setup

Typically set to

e MTU of directly connected network — size of TCP and IP
headers

Three events cause a segment to be sent

> MSS bytes of data ready to be sent
Explicit PUSH operation by application
Periodic timeout
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TCP Byte Stream

Application Application
process process
Write Read
bytes bytes
TCP TCP

TCP Segment| |[TCP Segment|- - - [TCP Segment
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TCP Connection Termination

Two generals problem

— Enemy camped in valley

— Two generals’ hills separated by enemy

— Communication by unreliable messengers

— Generals need to agree whether to attack or retreat

¥o'hiEe army
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Two generals problem

Can messages over an unreliable network be used to
guarantee two entities do something
simultaneously?

— No, even if all messages get through
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TCP Connection Termination

Message Types
— Finished (FIN)
— Acknowledge (ACK)

Active Close W
— Sends no more data "

Passive close //A/O‘:K//
— Accepts no more data /
W

Time flows down

Client Server
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TCP Segment Header Format

0 8

16

31

Source Port

Header Length 0

Flags

Destination Port

Advertised Window

TCP Checksum

Urgent Pointer

Options
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TCP Segment Header Format

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length

0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 16-bit source and destination ports

CS/ECE 438
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TCP Segment Header Format

0 8

16

31

Source Port

Header Length 0

Flags

Destination Port

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 32-bit send and ACK sequence

numbers
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TCP Segment Header Format

0 8

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length 0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 4-bit header length in 4-byte words

— Minimum 5 bytes
— Offset to first data byte
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TCP Segment Header Format

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length

0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e Reserved

— Must be 0

CS/ECE 438
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TCP Segment Header Format

0 8 16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options
e 6 1-bit flags
URG:  Contains urgent data
ACK: Valid ACK seq. number RST:  Reset connection
SYN:  Synchronize for setup

PSH: Do not delay data delivery
FIN:

Final segment for teardown
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TCP Segment Header Format

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length

0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 16-bit advertised window
— Space remaining in receive window

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

39



TCP Segment Header Format

0 8 16 31
Source Port Destination Port

Sequence Number

ACK Sequence Number

Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options

e 16-bit checksum

— Uses IP checksum algorithm
— Computed on header, data and pseudo header

0 16 (TDP) TCP Segment Length




TCP Segment Header Format

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length

0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 16-bit urgent data pointer

— IfURG =1

— Index of last byte of urgent data in segment

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

41



TCP Options

Negotiate maximum segment size (MSS)

— Each host suggests a value

— Minimum of two values is chosen

— Prevents IP fragmentation over first and last hops

Packet timestamp

— Allows RTT calculation for retransmitted packets

— Extends sequence number space for identification of stray
packets

Negotiate advertised window granularity

— Allows larger windows
— Good for routes with large bandwidth-delay products
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TCP State Descriptions

CLOSED Disconnected

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK
FIN_WAIT _1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK'd

CLOSING Connection closed by both sides simultaneously
TIME_WAIT Wait for network to discard related packets
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TCP State Transition Diagram

Active
open/SYN

CLOSED

Close

Passive open
SYN/SYN + ACK

Send/SYN

P
<«

SYN/SYN + ACK

ACK

Close/EIN Close/ACK «FSTABLISHED

| FIN/ACK
FIN_WAIT 1 FIN/ACK CLOSE_WAIT

ACKy CLOSING Close/FIN §

FIN_WAIT 2 >, FIN £ I ack LAST;@

> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED
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TCP State Transition Diagram

m local

Message from i Event from local Active
receiver/ ition application/ open/SYN
response sent ® Passive open  message sent Close

mm) SYN/SYN + ACK

Send/SYN

P
<«

SYN/SYN + ACK

ACK

SYN + ACK/ACK

Close/EIN Close/ACK «FSTABLISHED
! EIN/ACK

FIN. WAIT 1 FIN/ACK CLOSE_WAIT
ACK} CLOSING Close/FIN §

FIN_WAIT 2 >, FIN £ I ack LAST;@

> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED
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TCP State Transition Diagram

e (Questions

— State transitions

e Describe the path taken by a server under normal
conditions

e Describe the path taken by a client under normal
conditions

e Describe the path taken assuming the client closes the
connection first

— TIME_WAIT state

e What purpose does this state serve

e Prove that at least one side of a connection enters this
state

e Explain how both sides might enter this state
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TCP State Transition Diagram

Establishment under
normal conditions

Active
CLCBED open/SYN

Passive open

SYN/SYN + A

Send/SYN

ACK  SYN/SYN + ACK

»~ SYN + ACK/ACK
ESTABLISHED

FIN/ACK

Close/FIN Close/FIN

FIN/ACK

FIN WAIT 1 CLOSE_WAIT
ACK] CLOSING Close/FIN |
FIN_ WAIT 2 ACK/ACK | ACK LAST ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED
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TCP State Transition Diagram

Lost ACK from
receiver?

Active
CILOIEED open/SYN

Passive open

SYN/SYN + A

Send/SYN

ACK SYN/SYN + ACK

ACK/ACK

Close/FIN Close/FIN

ESTABLISHED
FIN/ACK

FIN/ACK CLOSE_WAIT

ACK] CLOSING Close/FIN |
FIN_ WAIT 2 ACK/ACK | ACK LAST ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED
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TCP State Transition Diagram

Local send when in
LISTEN

Active
CILOIEED open/SYN

Passive open

SYN/SYN + A

Send/SYN

SYN/SYN + ACK
—_—

Close/FIN Close/F Never used

ACK/ACK

FIN/ACK

FIN/ACK

FIN WAIT 1 CLOSE_WAIT
ACK{ Close/FIN |
FIN_ WAIT 2 ACK/ACK | ACK LAST ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED
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TCP State Transition Diagram

Timeouts?

Active
— open/SYN

Passive open

Send/SYN

SYN/SYN + ACK
ey, -
Close/FIN Close/F it no response after
multiple tries, return I/ACK
FIN._ WAIT 1 ' to CLOSED CLOSE_WAIT

CLOSING Close/FIN |}
FIN.ZWAIT_2 D, T 0 | ACK LAST_ACK

> TIME WAIT + ACK
FIN/ACK - i
Timeout CLOSED

ACK/ACK
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TCP State Transition Diagram

One side closes first .
Active

open/SYN

CLOSED

Close

Passive open
SYN/SYN + ACK

Send/SYN

P
<«

ACK  SYN/SYN + ACK

SYN + ACK/ACK

ESTABLISHED
FIN/ACK

Close/FIN

@ FIN/ACK

AC CLOSING Close/FIN
EIN T
ACK/ACK + ACK @
TIME_ WAIT O ACK
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TCP TIME_WALIT State

e Problem

— What happens if a segment from an old
connection arrives at a new connection?

e Maximum Segment Lifetime
— Max time an old segment can live in the Internet

e TIME_WAIT State

— Connection remains in this state from two times
the maximum segment lifetime

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

52



TCP State Transition Diagram

Both sides close at
the same time

Active
open/SYN

CLOSED

Close

Passive open
SYN/SYN + ACK

Send/SYN

P
<«

SYN/SYN + ACK

ACK
Close/FIN

SYN + ACK/ACK

Close/FIN ESTABLISHED

FIN/ACK

\4

FIN_WAIT 1 FIN/ACK CLOSE_WAIT
ACK} _CLOSING > Close/FIN |
FIN_WAIT 2 >, FIN £ ACK LAST;@
ACK

»C TIME WAIT !
FIN/ACK ~
Timeout CLOSED
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TCP State

FIN_ACK received
(rare)

Passive open

SYN/SYN + ACK

Transition Diagram

Active
open/SYN

CLOSED

Close

Send/SYN

P
<«

ACK

Close/FIN Close/EIN

\

y

FIN/ACK

SYN/SYN + ACK

SYN + ACK/ACK

ESTABLISHED
FIN/ACK

FIN_WAIT 1 CLOSE_WAIT
ACKy CLOSING Close/FIN §
SN CLAST ACKD
FIN_WAIT_2 >, DIV =2 ‘ v_ACK\ LAST_ACK
»C_ TIME_WAIT ACK
FIN/ACK ~ =~ Timeou
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TCP Sliding Window Protocol

Sequence numbers
— Indices into byte stream

Initial Sequence Number
— Why not just use 07?

ACK sequence number

— Actually next byte expected as opposed to
last byte received
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TCP Sliding Window Protocol

Advertised window
— Enables dynamic receive window size

Receive buffers

— Data ready for delivery to application until
requested

— QOut-of-order data to maximum buffer capacity

Sender buffers
— Unacknowledged data
— Unsent data out to maximum buffer capacity
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TCP Sliding Window Protocol —
Sender Side

« LastByteAcked <= Last Byt eSent
« LastByteSent <= LastByteWitten
e Buffer bytes between Last Byt eAcked and Last Byt eWitten

Maximum buffer size

Advertised window

A A T

Data available, but
outside window

First unacknowledged byte Last byte sent
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TCP Sliding Window Protocol —
Receiver Side

Last Byt eRead < Next Byt eExpect ed
Next Byt eExpected <= LastByteRcvd + 1
Buffer bytes between Next Byt eRead and Last Byt eRcvd

\ 4

A

Maximum buffer size

<

y Advertised window

\ 4

2+ 2+ '\/

Buffered, out-of-order data
Next byte expected (ACK value)
Next byte to be read by application
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Flow Control vs. Congestion

Control
Flow control
— Preventing senders from overrunning the capacity of the
receivers

Congestion control

— Preventing too much data from being injected into the
network, causing switches or links to become overloaded

Which one does TCP provide?
TCP provides both

— Flow control based on advertised window
— Congestion control discussed later in class
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TCP Flow Control: Receiver

Receive buffer size

— = MaxRcvBuUf f er
— LastByteRcvd - Last Byt eRead < = MaxRcvBuf

Advertised window
— = MaxRcvBuf - (NextByteExp - NextByteRead)

— Shrinks as data arrives and
— Grows as the application consumes data
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TCP Flow Control: Sender

e Send buffer size
— = MaxSendBuf f er
— LastByteSent - LastByteAcked < = Advert W ndow

e FEffective buffer
— = AdvertWndow - (LastByteSent - LastByteAck)

— EffectiveWndow > 0 to send dat a

e Relationship between sender and receiver

— LastByteWitten - LastByteAcked < =
Max SendBuf f er

— Dbl ock sender I f (LastByteWitten -
Last Byt eAcked) + y > MaxSender Buffer
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TCP Flow Control

Problem: Slow receiver application

— Advertised window goes to 0

— Sender cannot send more data

— Non-data packets used to update window

— Receiver may not spontaneously generate update or
update may be lost

Solution

— Sender periodically sends 1-byte segment, ignoring
advertised window of 0

— Eventually window opens
— Sender learns of opening from next ACK of 1-byte segment
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TCP Flow Control

Problem: Application delivers tiny pieces of data to
TCP
— Example: telnet in character mode
— Each piece sent as a segment, returned as ACK
— Very inefficient
Solution
— Delay transmission to accumulate more data
— Nagle’s algorithm
e Send first piece of data
e Accumulate data until first piece ACK'd

Send accumulated data and restart accumulation
Not ideal for some traffic (e.g., mouse motion)
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TCP Flow Control

Problem: Slow application reads data in tiny pieces
— Receiver advertises tiny window

— Sender fills tiny window

— Known as silly window syndrome

Solution

— Advertise window opening only when MSS or 2 of buffer is
available

— Sender delays sending until window is MSS or 2 of
receiver’s buffer (estimated)
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TCP Bit Allocation Limitations

e Sequence numbers vs. packet lifetime

— Assumed that IP packets live less than 60
seconds

— (Can we send 232 bytes in 60 seconds?
— Less than an STS-12 line

o Advertised window vs. delay-bandwidth
— Only 16 bits for advertised window
— Cross-country RTT = 100 ms
— Adequate for only 5.24 Mbps!
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TCP Sequence Numbers —

32-bit

Bandwidth Speed Time until wrap around
T1 1.5 Mbps 6.4 hours

Ethernet 10 Mbps 57 minutes

T3 45 Mbps 13 minutes

FDDI 100 Mbps | 6 minutes

STS-3 155 Mbps | 4 minutes

STS-12 622 Mbps | 55 seconds

STS-24 1.2 Gbps 28 seconds

CS/ECE 438
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TCP Advertised Window —

16-bit
Bandwidth Speed Delay x Bandwidth Product
T1 1.5Mbps |18 KB
Ethernet 10 Mbps 122 KB
T3 45 Mbps 549 KB
FDDI 100 Mbps | 1.2 MB
STS-3 155 Mbps | 1.8 MB
STS-12 622 Mbps | 7.4 MB
STS-24 1.2 Gbps |14.8 MB

CS/ECE 438
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TCP Round Trip Time and

Timeout
e How should TCP setits e Estimating RTT
timeout value? —  SampleRTT
— Longer than RTT e Measured time from
e But RTT varies segment transmission
until ACK receipt
— Too short . P
b ture ¢ e Will vary
remature timeou e Want smoother
* Unnecessary estimated RTT
retransmissions
~ Tool — Average several recent
00 long _ measurements
* Slow re?ccltlon to e Not just current
segment loss SampleRTT
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TCP Adaptive Retransmission
Algorithm - Original

e Theory
— Estimate RTT
— Multiply by 2 to allow for variations

e Practice
— Use exponential moving average (a = 0.1 to 0.2)

— Estimate = (a) * measurement + (1- a) *
estimate

— Influence of past sample decreases exponentially
fast
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TCP Adaptive Retransmission
Algorithm - Original

e Problem: What does an ACK really ACK?

— Was ACK in response to first, second, etc
transmission?

Sample
RTT

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009
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TCP Adaptive Retransmission
Algorithm — Karn-Partridge

e Algorithm

— Exclude retransmitted packets from RTT
estimate

— For each retransmission
e Double RTT estimate
e Exponential backoff from congestion
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TCP Adaptive Retransmission
Algorithm — Karn-Partridge

e Problem
— Still did not handle variations well

— Did not solve network congestion
problems as well as desired

e At high loads round trip variance is high
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RTT (milliseconds)

350 |

300

Example RTT Estimation

— ¢ SampleRTT ™ Estimated RTT

250

; | Mun I

N
o
o

=
a1
o

100
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TCP Adaptive Retransmission
Algorithm — Jacobson

o Algorlthm

Estimate variance of RTT

e (Calculate mean interpacket RTT deviation to
approximate variance

e Use second exponential moving average
e Dev = (B) * |RTT_Est — Sample| + (1) * Dev
e [B=0.25 A=0.125 for RTT_est

— Use variance estimate as component of RTT
estimate

e Next RTT = RTT _Est + 4 * Dev
— Protects against high jitter
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TCP Adaptive Retransmission
Algorithm — Jacobson

Notes

— Algorithm is only as good as the granularity of
the clock

— Accurate timeout mechanism is important for
congestion control
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1975
Three-way handshake
Raymond Tomlinson
In SIGCOMM 75

1974
TCP described by
Vint Cerf and Bob Kahn
In IEEE Trans Comm
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1975

CS/ECE 438

1980

Evolution of TCP

1984

Nagel’s algorithm
to reduce overhead
of small packets;
predicts congestion

collapse
1983
BSD Unix 4.2 1986 1988
supports TCP/IP Congestion Van Jacobson’s
collapse algorithms
observed congestion avoidance

1982

TCP & IP
RFC 793 & 791
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1985

round-trip time

1987
Karn’s algorithm 1990
to better estimate 4.3BSD Reno

fast retransmit

delayed ACK’s

4.3BSD Tahoe)

and congestion control
(most implemented in

1990
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TCP Through the 1990s

1996
SACK TCP
(Floyd et al)
Selective
Acknowledgement
1993 1994 1996
TCP Vegas ECN Hoe
(Brakmo et al) (Floyd) NewReno startup
delay-based Explicit and loss recovery
congestion avoidance Congestion
Notification
1993 1994 1996
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