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The Big(ger) Picture

end-to-end

IP

data link/physical

application

most coverage 
until now

428/598 topics

detailed description of issues here

performance congestion control



Where are you?

• Understand how to

– Build a network on one physical medium

– Connect networks 

– Implement a reliable byte stream

– Address network heterogeneity

– Address global scale

• Final part of class

– End-to-end issues and common protocols

– Congestion control: TCP heuristics, switch/router 
approaches to fairness

– Performance analysis
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End-to-End Protocols

End-to-end Service Model

Protocol Examples
User Datagram Protocol (UDP)

Transmission Control Protocol (TCP)



End-to-End Service Model

• User perspective of network

– Knowledge of required functionality

– Implementation is hidden

• Focus

– Enable communication between applications

– Translate from host-to-host protocols

• Services

– Services that cannot be implemented in lower layers (hop-
by-hop basis)

– Avoid duplicate effort

– Services not needed by all applications
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End-to-End Service Model

• Build on “best effort” service provided 
by network layer (IP)

– Messages sent from a host are delivered 
to another host

• May be lost

• May be reordered

• May be delivered multiple times

• May be limited to a finite size

• May be delivered after a long delay

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 6



End-to-End Service Model

• Support services needed by the application

– Multiple connections per host

– Guaranteed delivery

– Messages delivered in the order they were sent

– Messages delivered at most once

– No limit on message size

– Synchronization between sender and receiver

– Flow control
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End-to-End Service Model

• Challenge

– Given

• Less than desirable properties of the underlying 
network

– Create

• High-level services required by applications

• Services

– Asynchronous demultiplexing service

– Reliable byte-stream service
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User Datagram Protocol (UDP)

• Simple connectionless 
demultiplexer

– No handshaking 

– Each segment handled 
independently

• Service Model

– Thin veneer over IP 
services

– Unreliable unordered 
datagram service

– Addresses multiplexing 
of multiple connections

• Multiplexing 

– 16-bit port numbers

– Well-known ports

• Checksum

– Validate header

– Optional in IPv4

– Mandatory in IPv6
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User Datagram Protocol (UDP)

• Why is there a UDP?

– No connection 
establishment

• Low delay

– Simple

• No connection state at 
sender, receiver

– Small header

– No congestion control

• UDP can blast away as 
fast as desired

• What kind of applications is 
UDP good for?

– Streaming multimedia 
apps

– Loss tolerant

– Rate sensitive

• Other UDP uses

– DNS, SNMP

• Reliable transfer over UDP

– At application layer

– Application-specific error 
recovery
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UDP Header Format

Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31



UDP Header Format

• 16-bit source and destination ports
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Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31



UDP Header Format

• Length includes 8-byte header and 
data
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Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31



UDP Header Format

• Checksum

• Uses IP checksum algorithm

– Computed on header, data and pseudo header
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Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31

Source IP Address

Destination IP Address

UDP Length0 17 (UDP)

0 8 16 31



UDP Header Format

• Checksum

– What purpose does the checksum serve?

– Why is it mandatory when using IPv6?
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Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31

Source IP Address

Destination IP Address

UDP Length0 17 (UDP)

0 8 16 31



Transmission Control Protocol 
(TCP)

• Reliable byte stream

• Service model

– Multiple connections per 
host

– Guaranteed delivery

– Messages delivered in the 
order they were sent

– Messages delivered at 
most once

– No limit on message size

– Synchronization between 
sender and receiver

– Flow control

• Multiplexing

– Equivalent to UDP

• Checksum

– Equivalent to UDP

– Mandatory
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TCP

• Connection oriented

– Explicit setup and teardown required

• Full duplex

– Data flows in both directions simultaneously

– Point-to-point connection

• Byte stream abstraction

– No boundaries in data 

– App writes bytes, TCP send segments, App 
receives bytes
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TCP

• Rate control

– Flow control to restrict sender rate to something 
manageable by receiver

– Congestion control to restrict sender to 
something manageable by network

– Both need to handle the presence of other traffic
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TCP Outline

• TCP vs. Sliding window on a direct link

• Usage model

• Segment header format and options

• States and state diagram

• Sliding window implementation details

• Flow control issues

• Bit allocation limitations

• Adaptive retransmission algorithms
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TCP vs. Direct Link

• Explicit connection setup required
– Dialup vs. dedicated line

• RTT varies
– Among peers (host at other end of connection)

– Over time

– Requires adaptive approach to retransmission (and window 
size)

• Packets
– Delayed

– Reordered

– Late
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TCP vs. Direct Link

• Peer capabilities vary
– Minimum link speed on route

– Buffering capacity at destination

– Requires adaptive approach to window sizes

• Network capacity varies
– Other traffic competes for most links

– Requires global congestion control strategy

• Question
– Why not implement more functionality (reliability, ordering, 

congestion control) in IP?



Proposal: 
Reliable Network Layer

• Service

– High probabilistic guarantee of correct, in order data 
transmission at the network layer

– Hop-by hop network layer ACKs

• Is this sufficient?

• No

– Routers may crash, buffers may overflow

• Is it beneficial?

– Maybe, depends on link’s error rate

– Improve performance, not provide correctness
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The End-to-End Argument

• Lower layer functions 

– May be redundant or of little value when compared with 
providing them at that low layer

• Functionality 

– Implemented at a lower layer iff it can be correctly and 
completely implemented there

• Real constraint

– Implementing functionality at a lower level should have 
minimum performance impact on applications that do not 
use the functionality
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End-to-End Argument

• In-order delivery

– hop-by-hop ordering guarantee is not robust to path 
changes or multiple paths

• Congestion control

– Should be stopped at source

– But network can provide feedback

100Mbps

100Mbps

5Mbps

5Mbps
100Mbps

1Mbps

green should get 9Mbps,
but gets only 5Mbps with

hop-by-hop drops



TCP Internals
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TCP Usage Model

• Connection setup
– 3-way handshake

• Data transport
– Sender writes data

– TCP
• Breaks data into segments

• Sends each segment over IP

• Retransmits, reorders and removes duplicates as necessary

– Receiver reads some data

• Teardown
– 4 step exchange
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TCP Connection Establishment

• 3-Way Handshake

– Sequence Numbers

• J,K

– Message Types

• Synchronize (SYN)

• Acknowledge (ACK)

– Passive Open

• Server listens for connection 
from client

– Active Open

• Client initiates connection to 
server

Synchronize (SYN) J

SYN K, 

acknowledge (ACK) J+1

ACK K+1

Client Server

Time flows down

listen



TCP Data Transport

• Data broken into segments

– Limited by maximum segment size (MSS)

– Defaults to 352 bytes

– Negotiable during connection setup

– Typically set to 

• MTU of directly connected network – size of TCP and IP 
headers

• Three events cause a segment to be sent

– ≥ MSS bytes of data ready to be sent

– Explicit PUSH operation by application

– Periodic timeout
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TCP Byte Stream

Application 
process

Application 
process

TCP TCP

TCP Segment TCP Segment TCP Segment…

Write 
bytes

Read 
bytes

Send buffer Recv buffer



TCP Connection Termination

• Two generals problem

– Enemy camped in valley

– Two generals’ hills separated by enemy

– Communication by unreliable messengers

– Generals need to agree whether to attack or retreat
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Two generals problem

• Can messages over an unreliable network be used to 
guarantee two entities do something 
simultaneously?

– No, even if all messages get through

• No way to be sure last message gets through!
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11 am ok?

So, 11 it is?
Yes, 11 works

Yeah, but what it you

don’t get this ack?
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TCP Connection Termination

• Message Types

– Finished (FIN)

– Acknowledge (ACK)

• Active Close

– Sends no more data

• Passive close

– Accepts no more data

Finished (FIN) J

ACK J+1

ACK K+1

Client Server

Time flows down

FIN K
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options



TCP Segment Header Format

• 16-bit source and destination ports
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Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options



TCP Segment Header Format
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Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 32-bit send and ACK sequence 
numbers
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 4-bit header length in 4-byte words

– Minimum 5 bytes

– Offset to first data byte
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• Reserved

– Must be 0
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 6 1-bit flags
URG: Contains urgent data

ACK: Valid ACK seq. number

PSH: Do not delay data delivery

RST: Reset connection
SYN: Synchronize for setup

FIN: Final segment for teardown
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 16-bit advertised window

– Space remaining in receive window



• 16-bit checksum

– Uses IP checksum algorithm

– Computed on header, data and pseudo header
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TCP Segment Header Format

Source IP Address

Destination IP Address

TCP Segment Length0 16 (TDP)

0 8 16 31

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 16-bit urgent data pointer 

– If URG = 1

– Index of last byte of urgent data in segment
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TCP Options

• Negotiate maximum segment size (MSS)
– Each host suggests a value

– Minimum of two values is chosen

– Prevents IP fragmentation over first and last hops

• Packet timestamp
– Allows RTT calculation for retransmitted packets

– Extends sequence number space for identification of stray 
packets

• Negotiate advertised window granularity
– Allows larger windows

– Good for routes with large bandwidth-delay products
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TCP State Descriptions

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK’d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK’d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK’d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK’d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

FIN + 
ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK

ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

FIN + 
ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK

ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN

Event from local 
application

Message from 
receiver/ 

response sent

Event from local 
application/ 

message sent
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TCP State Transition Diagram

• Questions
– State transitions

• Describe the path taken by a server under normal 
conditions

• Describe the path taken by a client under normal 
conditions

• Describe the path taken assuming the client closes the 
connection first

– TIME_WAIT state
• What purpose does this state serve
• Prove that at least one side of a connection enters this 

state
• Explain how both sides might enter this state
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

FIN + 
ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active 
open/SYN

SYN + ACK/ACK

Send/SYN

Establishment under 
normal conditions
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

FIN + 
ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active 
open/SYN

SYN + ACK/ACK

Send/SYN

Lost ACK from 
receiver?
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

FIN + 
ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active 
open/SYN

SYN + ACK/ACK

Send/SYN

Local send when in 
LISTEN

Send/SYN

SYN/SYN + ACK

Never used
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

FIN + 
ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active 
open/SYN

SYN + ACK/ACK

Send/SYN

Timeouts?

Send/SYN

SYN/SYN + ACK

If no response after 
multiple tries, return 

to CLOSED
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

ACK

FIN/ACK Timeout 

FIN/ACK

Close/FIN

ACK

FIN + 
ACK/ACK

One side closes first



TCP TIME_WAIT State

• Problem

– What happens if a segment from an old 
connection arrives at a new connection?

• Maximum Segment Lifetime

– Max time an old segment can live in the Internet

• TIME_WAIT State

– Connection remains in this state from two times 
the maximum segment lifetime
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

Timeout 

FIN/ACK

ACK
FIN + 

ACK/ACK

Both sides close at 
the same time
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

Timeout 

FIN + 
ACK/ACK

FIN + 
ACK/ACK

FIN_ACK received
(rare)



TCP Sliding Window Protocol

• Sequence numbers

– Indices into byte stream

• Initial Sequence Number

– Why not just use 0?

• ACK sequence number 

– Actually next byte expected as opposed to 
last byte received
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TCP Sliding Window Protocol

• Advertised window

– Enables dynamic receive window size

• Receive buffers

– Data ready for delivery to application until 
requested

– Out-of-order data to maximum buffer capacity

• Sender buffers

– Unacknowledged data

– Unsent data out to maximum buffer capacity
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TCP Sliding Window Protocol –
Sender Side

• LastByteAcked <= LastByteSent

• LastByteSent <= LastByteWritten

• Buffer bytes between LastByteAcked and LastByteWritten

First unacknowledged byte Last byte sent

Data available, but 
outside window

Maximum buffer size

Advertised window
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TCP Sliding Window Protocol –
Receiver Side

• LastByteRead <  NextByteExpected

• NextByteExpected <= LastByteRcvd + 1

• Buffer bytes between NextByteRead and LastByteRcvd

Next byte to be read by application

Next byte expected (ACK value)

Buffered, out-of-order data

Maximum buffer size

Advertised window



Flow Control vs. Congestion 
Control

• Flow control

– Preventing senders from overrunning the capacity of the 
receivers

• Congestion control

– Preventing too much data from being injected into the 
network, causing switches or links to become overloaded

• Which one does TCP provide?

• TCP provides both

– Flow control based on advertised window

– Congestion control discussed later in class
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TCP Flow Control: Receiver

• Receive buffer size 
– = MaxRcvBuffer
– LastByteRcvd - LastByteRead < = MaxRcvBuf

• Advertised window
– = MaxRcvBuf - (NextByteExp - NextByteRead)
– Shrinks as data arrives and 
– Grows as the application consumes data
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TCP Flow Control: Sender

• Send buffer size 
– = MaxSendBuffer
– LastByteSent - LastByteAcked < = AdvertWindow

• Effective buffer 
– = AdvertWindow - (LastByteSent - LastByteAck)
– EffectiveWindow > 0 to send data

• Relationship between sender and receiver
– LastByteWritten - LastByteAcked < = 

MaxSendBuffer
– block sender if (LastByteWritten -

LastByteAcked) + y > MaxSenderBuffer
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TCP Flow Control

• Problem: Slow receiver application
– Advertised window goes to 0

– Sender cannot send more data

– Non-data packets used to update window

– Receiver may not spontaneously generate update or 
update may be lost

• Solution
– Sender periodically sends 1-byte segment, ignoring 

advertised window of 0

– Eventually window opens

– Sender learns of opening from next ACK of 1-byte segment
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TCP Flow Control

• Problem: Application delivers tiny pieces of data to 
TCP
– Example: telnet in character mode

– Each piece sent as a segment, returned as ACK

– Very inefficient

• Solution
– Delay transmission to accumulate more data

– Nagle’s algorithm
• Send first piece of data

• Accumulate data until first piece ACK’d

• Send accumulated data and restart accumulation

• Not ideal for some traffic (e.g., mouse motion)
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TCP Flow Control

• Problem: Slow application reads data in tiny pieces
– Receiver advertises tiny window

– Sender fills tiny window

– Known as silly window syndrome

• Solution
– Advertise window opening only when MSS or ½ of buffer is 

available

– Sender delays sending until window is MSS or ½ of 
receiver’s buffer (estimated)
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TCP Bit Allocation Limitations

• Sequence numbers vs. packet lifetime

– Assumed that IP packets live less than 60 
seconds

– Can we send 232 bytes in 60 seconds?

– Less than an STS-12 line

• Advertised window vs. delay-bandwidth

– Only 16 bits for advertised window

– Cross-country RTT = 100 ms

– Adequate for only 5.24 Mbps!
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TCP Sequence Numbers –
32-bit

Bandwidth Speed Time until wrap around

T1 1.5 Mbps 6.4 hours

Ethernet 10 Mbps 57 minutes

T3 45 Mbps 13 minutes

FDDI 100 Mbps 6 minutes

STS-3 155 Mbps 4 minutes

STS-12 622 Mbps 55 seconds

STS-24 1.2 Gbps 28 seconds
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TCP Advertised Window –
16-bit

Bandwidth Speed Delay x Bandwidth Product

T1 1.5 Mbps 18 KB

Ethernet 10 Mbps 122 KB

T3 45 Mbps 549 KB

FDDI 100 Mbps 1.2 MB

STS-3 155 Mbps 1.8 MB

STS-12 622 Mbps 7.4 MB

STS-24 1.2 Gbps 14.8 MB



TCP Round Trip Time and 
Timeout

• How should TCP set its 
timeout value?

– Longer than RTT

• But RTT varies

– Too short

• Premature timeout

• Unnecessary 
retransmissions

– Too long

• Slow reaction to 
segment loss

• Estimating RTT

– SampleRTT

• Measured time from 
segment transmission 
until ACK receipt

• Will vary

• Want smoother 
estimated RTT

– Average several recent 
measurements

• Not just current 
SampleRTT
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TCP Adaptive Retransmission 
Algorithm - Original

• Theory
– Estimate RTT

– Multiply by 2 to allow for variations

• Practice
– Use exponential moving average (α = 0.1 to 0.2)

– Estimate = (α) * measurement + (1- α) * 
estimate

– Influence of past sample decreases exponentially 
fast
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TCP Adaptive Retransmission 
Algorithm - Original

• Problem: What does an ACK really ACK?

– Was ACK in response to first, second, etc 
transmission?

A B

ACK

Sample
RTT

A B

Original transmission

retransmission

Sample
RTT

Original transmission

retransmission

ACK
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TCP Adaptive Retransmission 
Algorithm – Karn-Partridge

• Algorithm
– Exclude retransmitted packets from RTT 

estimate

– For each retransmission
• Double RTT estimate

• Exponential backoff from congestion



CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 72

TCP Adaptive Retransmission 
Algorithm – Karn-Partridge

• Problem
– Still did not handle variations well

– Did not solve network congestion 
problems as well as desired
• At high loads round trip variance is high



Example RTT Estimation
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TCP Adaptive Retransmission 
Algorithm – Jacobson

• Algorithm
– Estimate variance of RTT

• Calculate mean interpacket RTT deviation to 
approximate variance

• Use second exponential moving average
• Dev = (β) * |RTT_Est – Sample| + (1–β) * Dev
• β = 0.25, A = 0.125 for RTT_est

– Use variance estimate as component of RTT 
estimate
• Next_RTT = RTT_Est + 4 * Dev

– Protects against high jitter
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TCP Adaptive Retransmission 
Algorithm – Jacobson

• Notes
– Algorithm is only as good as the granularity of 

the clock
– Accurate timeout mechanism is important for 

congestion control



Evolution of TCP
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1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion 

collapse

1987
Karn’s algorithm
to better estimate 

round-trip time

1986
Congestion 

collapse
observed

1988
Van Jacobson’s 

algorithms
congestion avoidance 
and congestion control
(most implemented in 

4.3BSD Tahoe )

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75



TCP Through the 1990s
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1993 1994 1996

1994
ECN

(Floyd)
Explicit 

Congestion
Notification

1993
TCP Vegas 

(Brakmo et al)
delay-based 

congestion avoidance

1996
SACK TCP
(Floyd et al)

Selective 
Acknowledgement

1996
Hoe

NewReno startup 
and loss recovery


