
Lecture 10:
End to End Protocols

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

April 2, 2010

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 2

The Big(ger) Picture

end-to-end

IP

data link/physical

application

most coverage
until now

428/598 topics

detailed description of issues here

performance congestion control

Where are you?

• Understand how to

– Build a network on one physical medium

– Connect networks

– Implement a reliable byte stream

– Address network heterogeneity

– Address global scale

• Final part of class

– End-to-end issues and common protocols

– Congestion control: TCP heuristics, switch/router
approaches to fairness

– Performance analysis

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 3

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 4

End-to-End Protocols

End-to-end Service Model

Protocol Examples
User Datagram Protocol (UDP)

Transmission Control Protocol (TCP)

End-to-End Service Model

• User perspective of network

– Knowledge of required functionality

– Implementation is hidden

• Focus

– Enable communication between applications

– Translate from host-to-host protocols

• Services

– Services that cannot be implemented in lower layers (hop-
by-hop basis)

– Avoid duplicate effort

– Services not needed by all applications

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 5

End-to-End Service Model

• Build on “best effort” service provided
by network layer (IP)

– Messages sent from a host are delivered
to another host

• May be lost

• May be reordered

• May be delivered multiple times

• May be limited to a finite size

• May be delivered after a long delay

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 6

End-to-End Service Model

• Support services needed by the application

– Multiple connections per host

– Guaranteed delivery

– Messages delivered in the order they were sent

– Messages delivered at most once

– No limit on message size

– Synchronization between sender and receiver

– Flow control

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 7

End-to-End Service Model

• Challenge

– Given

• Less than desirable properties of the underlying
network

– Create

• High-level services required by applications

• Services

– Asynchronous demultiplexing service

– Reliable byte-stream service

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 8

User Datagram Protocol (UDP)

• Simple connectionless
demultiplexer

– No handshaking

– Each segment handled
independently

• Service Model

– Thin veneer over IP
services

– Unreliable unordered
datagram service

– Addresses multiplexing
of multiple connections

• Multiplexing

– 16-bit port numbers

– Well-known ports

• Checksum

– Validate header

– Optional in IPv4

– Mandatory in IPv6

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 9

User Datagram Protocol (UDP)

• Why is there a UDP?

– No connection
establishment

• Low delay

– Simple

• No connection state at
sender, receiver

– Small header

– No congestion control

• UDP can blast away as
fast as desired

• What kind of applications is
UDP good for?

– Streaming multimedia
apps

– Loss tolerant

– Rate sensitive

• Other UDP uses

– DNS, SNMP

• Reliable transfer over UDP

– At application layer

– Application-specific error
recovery

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 10

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 11

UDP Header Format

Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31

UDP Header Format

• 16-bit source and destination ports

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 12

Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31

UDP Header Format

• Length includes 8-byte header and
data

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 13

Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31

UDP Header Format

• Checksum

• Uses IP checksum algorithm

– Computed on header, data and pseudo header

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 14

Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31

Source IP Address

Destination IP Address

UDP Length0 17 (UDP)

0 8 16 31

UDP Header Format

• Checksum

– What purpose does the checksum serve?

– Why is it mandatory when using IPv6?

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 15

Source Port Destination Port

UDP Length UDP Checksum

0 8 16 31

Source IP Address

Destination IP Address

UDP Length0 17 (UDP)

0 8 16 31

Transmission Control Protocol
(TCP)

• Reliable byte stream

• Service model

– Multiple connections per
host

– Guaranteed delivery

– Messages delivered in the
order they were sent

– Messages delivered at
most once

– No limit on message size

– Synchronization between
sender and receiver

– Flow control

• Multiplexing

– Equivalent to UDP

• Checksum

– Equivalent to UDP

– Mandatory

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 16

TCP

• Connection oriented

– Explicit setup and teardown required

• Full duplex

– Data flows in both directions simultaneously

– Point-to-point connection

• Byte stream abstraction

– No boundaries in data

– App writes bytes, TCP send segments, App
receives bytes

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 17

TCP

• Rate control

– Flow control to restrict sender rate to something
manageable by receiver

– Congestion control to restrict sender to
something manageable by network

– Both need to handle the presence of other traffic

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 18

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 19

TCP Outline

• TCP vs. Sliding window on a direct link

• Usage model

• Segment header format and options

• States and state diagram

• Sliding window implementation details

• Flow control issues

• Bit allocation limitations

• Adaptive retransmission algorithms

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 20

TCP vs. Direct Link

• Explicit connection setup required
– Dialup vs. dedicated line

• RTT varies
– Among peers (host at other end of connection)

– Over time

– Requires adaptive approach to retransmission (and window
size)

• Packets
– Delayed

– Reordered

– Late

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 21

TCP vs. Direct Link

• Peer capabilities vary
– Minimum link speed on route

– Buffering capacity at destination

– Requires adaptive approach to window sizes

• Network capacity varies
– Other traffic competes for most links

– Requires global congestion control strategy

• Question
– Why not implement more functionality (reliability, ordering,

congestion control) in IP?

Proposal:
Reliable Network Layer

• Service

– High probabilistic guarantee of correct, in order data
transmission at the network layer

– Hop-by hop network layer ACKs

• Is this sufficient?

• No

– Routers may crash, buffers may overflow

• Is it beneficial?

– Maybe, depends on link’s error rate

– Improve performance, not provide correctness

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 22

The End-to-End Argument

• Lower layer functions

– May be redundant or of little value when compared with
providing them at that low layer

• Functionality

– Implemented at a lower layer iff it can be correctly and
completely implemented there

• Real constraint

– Implementing functionality at a lower level should have
minimum performance impact on applications that do not
use the functionality

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 23

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 24

End-to-End Argument

• In-order delivery

– hop-by-hop ordering guarantee is not robust to path
changes or multiple paths

• Congestion control

– Should be stopped at source

– But network can provide feedback

100Mbps

100Mbps

5Mbps

5Mbps
100Mbps

1Mbps

green should get 9Mbps,
but gets only 5Mbps with

hop-by-hop drops

TCP Internals

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 25

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 26

TCP Usage Model

• Connection setup
– 3-way handshake

• Data transport
– Sender writes data

– TCP
• Breaks data into segments

• Sends each segment over IP

• Retransmits, reorders and removes duplicates as necessary

– Receiver reads some data

• Teardown
– 4 step exchange

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 27

TCP Connection Establishment

• 3-Way Handshake

– Sequence Numbers

• J,K

– Message Types

• Synchronize (SYN)

• Acknowledge (ACK)

– Passive Open

• Server listens for connection
from client

– Active Open

• Client initiates connection to
server

Synchronize (SYN) J

SYN K,

acknowledge (ACK) J+1

ACK K+1

Client Server

Time flows down

listen

TCP Data Transport

• Data broken into segments

– Limited by maximum segment size (MSS)

– Defaults to 352 bytes

– Negotiable during connection setup

– Typically set to

• MTU of directly connected network – size of TCP and IP
headers

• Three events cause a segment to be sent

– ≥ MSS bytes of data ready to be sent

– Explicit PUSH operation by application

– Periodic timeout

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 28

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 29

TCP Byte Stream

Application
process

Application
process

TCP TCP

TCP Segment TCP Segment TCP Segment…

Write
bytes

Read
bytes

Send buffer Recv buffer

TCP Connection Termination

• Two generals problem

– Enemy camped in valley

– Two generals’ hills separated by enemy

– Communication by unreliable messengers

– Generals need to agree whether to attack or retreat

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 30

Two generals problem

• Can messages over an unreliable network be used to
guarantee two entities do something
simultaneously?

– No, even if all messages get through

• No way to be sure last message gets through!

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 31

11 am ok?

So, 11 it is?
Yes, 11 works

Yeah, but what it you

don’t get this ack?

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 32

TCP Connection Termination

• Message Types

– Finished (FIN)

– Acknowledge (ACK)

• Active Close

– Sends no more data

• Passive close

– Accepts no more data

Finished (FIN) J

ACK J+1

ACK K+1

Client Server

Time flows down

FIN K

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 33

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

TCP Segment Header Format

• 16-bit source and destination ports

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 34

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

TCP Segment Header Format

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 35

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 32-bit send and ACK sequence
numbers

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 36

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 4-bit header length in 4-byte words

– Minimum 5 bytes

– Offset to first data byte

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 37

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• Reserved

– Must be 0

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 38

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 6 1-bit flags
URG: Contains urgent data

ACK: Valid ACK seq. number

PSH: Do not delay data delivery

RST: Reset connection
SYN: Synchronize for setup

FIN: Final segment for teardown

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 39

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 16-bit advertised window

– Space remaining in receive window

• 16-bit checksum

– Uses IP checksum algorithm

– Computed on header, data and pseudo header

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 40

TCP Segment Header Format

Source IP Address

Destination IP Address

TCP Segment Length0 16 (TDP)

0 8 16 31

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 41

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

• 16-bit urgent data pointer

– If URG = 1

– Index of last byte of urgent data in segment

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 42

TCP Options

• Negotiate maximum segment size (MSS)
– Each host suggests a value

– Minimum of two values is chosen

– Prevents IP fragmentation over first and last hops

• Packet timestamp
– Allows RTT calculation for retransmitted packets

– Extends sequence number space for identification of stray
packets

• Negotiate advertised window granularity
– Allows larger windows

– Good for routes with large bandwidth-delay products

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 43

TCP State Descriptions

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK’d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK’d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK’d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK’d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 44

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK

ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 45

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK

ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN

Event from local
application

Message from
receiver/

response sent

Event from local
application/

message sent

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 46

TCP State Transition Diagram

• Questions
– State transitions

• Describe the path taken by a server under normal
conditions

• Describe the path taken by a client under normal
conditions

• Describe the path taken assuming the client closes the
connection first

– TIME_WAIT state
• What purpose does this state serve
• Prove that at least one side of a connection enters this

state
• Explain how both sides might enter this state

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 47

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active
open/SYN

SYN + ACK/ACK

Send/SYN

Establishment under
normal conditions

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 48

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active
open/SYN

SYN + ACK/ACK

Send/SYN

Lost ACK from
receiver?

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 49

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active
open/SYN

SYN + ACK/ACK

Send/SYN

Local send when in
LISTEN

Send/SYN

SYN/SYN + ACK

Never used

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 50

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active
open/SYN

SYN + ACK/ACK

Send/SYN

Timeouts?

Send/SYN

SYN/SYN + ACK

If no response after
multiple tries, return

to CLOSED

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 51

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

ACK

FIN/ACK Timeout

FIN/ACK

Close/FIN

ACK

FIN +
ACK/ACK

One side closes first

TCP TIME_WAIT State

• Problem

– What happens if a segment from an old
connection arrives at a new connection?

• Maximum Segment Lifetime

– Max time an old segment can live in the Internet

• TIME_WAIT State

– Connection remains in this state from two times
the maximum segment lifetime

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 52

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 53

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

Timeout

FIN/ACK

ACK
FIN +

ACK/ACK

Both sides close at
the same time

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 54

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

Timeout

FIN +
ACK/ACK

FIN +
ACK/ACK

FIN_ACK received
(rare)

TCP Sliding Window Protocol

• Sequence numbers

– Indices into byte stream

• Initial Sequence Number

– Why not just use 0?

• ACK sequence number

– Actually next byte expected as opposed to
last byte received

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 55

TCP Sliding Window Protocol

• Advertised window

– Enables dynamic receive window size

• Receive buffers

– Data ready for delivery to application until
requested

– Out-of-order data to maximum buffer capacity

• Sender buffers

– Unacknowledged data

– Unsent data out to maximum buffer capacity

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 56

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 57

TCP Sliding Window Protocol –
Sender Side

• LastByteAcked <= LastByteSent

• LastByteSent <= LastByteWritten

• Buffer bytes between LastByteAcked and LastByteWritten

First unacknowledged byte Last byte sent

Data available, but
outside window

Maximum buffer size

Advertised window

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 58

TCP Sliding Window Protocol –
Receiver Side

• LastByteRead < NextByteExpected

• NextByteExpected <= LastByteRcvd + 1

• Buffer bytes between NextByteRead and LastByteRcvd

Next byte to be read by application

Next byte expected (ACK value)

Buffered, out-of-order data

Maximum buffer size

Advertised window

Flow Control vs. Congestion
Control

• Flow control

– Preventing senders from overrunning the capacity of the
receivers

• Congestion control

– Preventing too much data from being injected into the
network, causing switches or links to become overloaded

• Which one does TCP provide?

• TCP provides both

– Flow control based on advertised window

– Congestion control discussed later in class

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 59

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 60

TCP Flow Control: Receiver

• Receive buffer size
– = MaxRcvBuffer
– LastByteRcvd - LastByteRead < = MaxRcvBuf

• Advertised window
– = MaxRcvBuf - (NextByteExp - NextByteRead)
– Shrinks as data arrives and
– Grows as the application consumes data

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 61

TCP Flow Control: Sender

• Send buffer size
– = MaxSendBuffer
– LastByteSent - LastByteAcked < = AdvertWindow

• Effective buffer
– = AdvertWindow - (LastByteSent - LastByteAck)
– EffectiveWindow > 0 to send data

• Relationship between sender and receiver
– LastByteWritten - LastByteAcked < =

MaxSendBuffer
– block sender if (LastByteWritten -

LastByteAcked) + y > MaxSenderBuffer

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 62

TCP Flow Control

• Problem: Slow receiver application
– Advertised window goes to 0

– Sender cannot send more data

– Non-data packets used to update window

– Receiver may not spontaneously generate update or
update may be lost

• Solution
– Sender periodically sends 1-byte segment, ignoring

advertised window of 0

– Eventually window opens

– Sender learns of opening from next ACK of 1-byte segment

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 63

TCP Flow Control

• Problem: Application delivers tiny pieces of data to
TCP
– Example: telnet in character mode

– Each piece sent as a segment, returned as ACK

– Very inefficient

• Solution
– Delay transmission to accumulate more data

– Nagle’s algorithm
• Send first piece of data

• Accumulate data until first piece ACK’d

• Send accumulated data and restart accumulation

• Not ideal for some traffic (e.g., mouse motion)

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 64

TCP Flow Control

• Problem: Slow application reads data in tiny pieces
– Receiver advertises tiny window

– Sender fills tiny window

– Known as silly window syndrome

• Solution
– Advertise window opening only when MSS or ½ of buffer is

available

– Sender delays sending until window is MSS or ½ of
receiver’s buffer (estimated)

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 65

TCP Bit Allocation Limitations

• Sequence numbers vs. packet lifetime

– Assumed that IP packets live less than 60
seconds

– Can we send 232 bytes in 60 seconds?

– Less than an STS-12 line

• Advertised window vs. delay-bandwidth

– Only 16 bits for advertised window

– Cross-country RTT = 100 ms

– Adequate for only 5.24 Mbps!

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 66

TCP Sequence Numbers –
32-bit

Bandwidth Speed Time until wrap around

T1 1.5 Mbps 6.4 hours

Ethernet 10 Mbps 57 minutes

T3 45 Mbps 13 minutes

FDDI 100 Mbps 6 minutes

STS-3 155 Mbps 4 minutes

STS-12 622 Mbps 55 seconds

STS-24 1.2 Gbps 28 seconds

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 67

TCP Advertised Window –
16-bit

Bandwidth Speed Delay x Bandwidth Product

T1 1.5 Mbps 18 KB

Ethernet 10 Mbps 122 KB

T3 45 Mbps 549 KB

FDDI 100 Mbps 1.2 MB

STS-3 155 Mbps 1.8 MB

STS-12 622 Mbps 7.4 MB

STS-24 1.2 Gbps 14.8 MB

TCP Round Trip Time and
Timeout

• How should TCP set its
timeout value?

– Longer than RTT

• But RTT varies

– Too short

• Premature timeout

• Unnecessary
retransmissions

– Too long

• Slow reaction to
segment loss

• Estimating RTT

– SampleRTT

• Measured time from
segment transmission
until ACK receipt

• Will vary

• Want smoother
estimated RTT

– Average several recent
measurements

• Not just current
SampleRTT

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 68

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 69

TCP Adaptive Retransmission
Algorithm - Original

• Theory
– Estimate RTT

– Multiply by 2 to allow for variations

• Practice
– Use exponential moving average (α = 0.1 to 0.2)

– Estimate = (α) * measurement + (1- α) *
estimate

– Influence of past sample decreases exponentially
fast

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 70

TCP Adaptive Retransmission
Algorithm - Original

• Problem: What does an ACK really ACK?

– Was ACK in response to first, second, etc
transmission?

A B

ACK

Sample
RTT

A B

Original transmission

retransmission

Sample
RTT

Original transmission

retransmission

ACK

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 71

TCP Adaptive Retransmission
Algorithm – Karn-Partridge

• Algorithm
– Exclude retransmitted packets from RTT

estimate

– For each retransmission
• Double RTT estimate

• Exponential backoff from congestion

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 72

TCP Adaptive Retransmission
Algorithm – Karn-Partridge

• Problem
– Still did not handle variations well

– Did not solve network congestion
problems as well as desired
• At high loads round trip variance is high

Example RTT Estimation

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 73

100

150

200

250

300

350

1 50 100

time (seconnds)

R
T

T
 (

m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 74

TCP Adaptive Retransmission
Algorithm – Jacobson

• Algorithm
– Estimate variance of RTT

• Calculate mean interpacket RTT deviation to
approximate variance

• Use second exponential moving average
• Dev = (β) * |RTT_Est – Sample| + (1–β) * Dev
• β = 0.25, A = 0.125 for RTT_est

– Use variance estimate as component of RTT
estimate
• Next_RTT = RTT_Est + 4 * Dev

– Protects against high jitter

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 75

TCP Adaptive Retransmission
Algorithm – Jacobson

• Notes
– Algorithm is only as good as the granularity of

the clock
– Accurate timeout mechanism is important for

congestion control

Evolution of TCP

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 76

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion

collapse

1987
Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

TCP Through the 1990s

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 77

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
delay-based

congestion avoidance

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

NewReno startup
and loss recovery

