Lecture 10:
End to End Protocols

CS/ECE 438: Communication Networks
Prof. Matthew Caesar
April 2, 2010

The Big(ger) Picture

application : 428/598 topics
end-to-end : detailed description of issues here
P most coverage \
data link/physical until now

performance <= congestion control

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 2

Where are you?

Understand how to

Build a network on one physical medium
Connect networks

Implement a reliable byte stream
Address network heterogeneity

Address global scale

Final part of class

End-to-end issues and common protocols

Congestion control: TCP heuristics, switch/router
approaches to fairness

Performance analysis

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

End-to-End Protocols

End-to-end Service Model

Protocol Examples

User Datagram Protocol (UDP)
Transmission Control Protocol (TCP)

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

End-to-End Service Model

e User perspective of network
— Knowledge of required functionality
— Implementation is hidden

e [Focus
— Enable communication between applications
— Translate from host-to-host protocols

e Services
— Services that cannot be implemented in lower layers (hop-
by-hop basis)
— Avoid duplicate effort
— Services not needed by all applications

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

End-to-End Service Model

e Build on “best effort” service provided
by network layer (IP)

— Messages sent from a host are delivered
to another host

e May
e May
e May
e May
e May

CS/ECE 438

be lost

be reordered

be delivered multiple times
be limited to a finite size

pe delivered after a long delay

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

End-to-End Service Model

Support services needed by the application
Multiple connections per host
Guaranteed delivery

Messages C

Messages C
No limit on

elivered in the order they were sent
elivered at most once
message size

Synchronization between sender and receiver
Flow control

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

End-to-End Service Model

e Challenge

— @Given

e Less than desirable properties of the underlying
network

— Create
o High-level services required by applications
e Services
— Asynchronous demultiplexing service
— Reliable byte-stream service

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

User Datagram Protocol (UDP)

e Simple connectionless ¢ Multiplexing

demultiplexer — 16-bit port numbers
— No handshaking — Well-known ports
— Each segment handled e Checksum
independently — Validate header
* Service Model — Optional in IPv4
— Thin veneer over IP — Mandatory in IPv6
services

— Unreliable unordered
datagram service

— Addresses multiplexing
of multiple connections

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

User Datagram Protocol (UDP)

Why is there a UDP?
— No connection
establishment
e Low delay
— Simple

e No connection state at
sender, receiver

— Small header

— No congestion control

e UDP can blast away as
fast as desired

What kind of applications is

UDP good for?

— Streaming multimedia
apps

— Loss tolerant

— Rate sensitive

Other UDP uses

— DNS, SNMP

Reliable transfer over UDP

— At application layer

— Application-specific error
recovery

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 10

UDP Header Format

0 8 6 31
Source Port Destination Port
UDP Length UDP Checksum

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

11

UDP

Header Format

0 8 6 31
Source Port Destination Port
UDP Length UDP Checksum

e 16-bit source and destination ports

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

12

UDP

Q 8

Header Format

Source Port

Destination Port

UDP Length

UDP Checksum

e Length includes 8-byte header and

data

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

13

UDP

8

Header Format

31

Source Port

Destination Port

UDP Length

UDP Checksum

e Checksum
e Uses IP checksum algorithm

— Computed on header, data and pseudo header

17 (UDP) UDP Length

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

14

UDP

8

Header Format

31

Source Port

Destination Port

UDP Length

UDP Checksum

Checksum

— What purpose does the checksum serve?

— Why is it mandatory when using IPv6?

17 (UDP) UDP Length

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

15

Transmission Control Protocol
(TCP)

Reliable byte stream e Multiplexing
Service model — Equivalent to UDP
— Multiple connections per e Checksum

host — Equivalent to UDP
— Guaranteed delivery — Mandatory

— Messages delivered in the
order they were sent

— Messages delivered at
most once

— No limit on message size

— Synchronization between
sender and receiver

— Flow control

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

16

TCP

e (Connection oriented
— Explicit setup and teardown required

e Full duplex
— Data flows in both directions simultaneously
— Point-to-point connection

e Byte stream abstraction
— No boundaries in data

— App writes bytes, TCP send segments, App
receives bytes

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

17

TCP

Rate control

— Flow control to restrict sender rate to something
manageable by receiver

— Congestion control to restrict sender to
something manageable by network

— Both need to handle the presence of other traffic

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

18

TCP Outline

TCP vs. Sliding window on a direct link
Usage model

Segment header format and options
States and state diagram

Sliding window implementation details
Flow control issues

Bit allocation limitations

Adaptive retransmission algorithms

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 19

TCP vs. Direct Link

Explicit connection setup required
— Dialup vs. dedicated line

RTT varies

— Among peers (host at other end of connection)

— Qver time

— Requires adaptive approach to retransmission (and window
size)

Packets

— Delayed

— Reordered

— Late

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

20

TCP vs. Direct Link

Peer capabilities vary

— Minimum link speed on route

— Buffering capacity at destination

— Requires adaptive approach to window sizes

Network capacity varies
— Other traffic competes for most links
— Requires global congestion control strategy

Question

— Why not implement more functionality (reliability, ordering,
congestion control) in IP?

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

21

Proposal:
Reliable Network Layer

Service

— High probabilistic guarantee of correct, in order data
transmission at the network layer

— Hop-by hop network layer ACKs

Is this sufficient?

No

— Routers may crash, buffers may overflow

Is it beneficial?
— Maybe, depends on link’s error rate
— Improve performance, not provide correctness

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 22

The End-to-End Argument

Lower layer functions

— May be redundant or of little value when compared with
providing them at that low layer

Functionality

— Implemented at a lower layer iff it can be correctly and
completely implemented there

Real constraint

— Implementing functionality at a lower level should have
minimum performance impact on applications that do not

use the functionality

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

23

End-to-End Argument

e In-order delivery
— hop-by-hop ordering guarantee is not robust to path
changes or multiple paths
e (Congestion control
— Should be stopped at source
— But network can provide feedback

100Mbps b 1Mbps
S
N P —= green should get 9Mbps,
but gets only 5Mbps with
5Mbps hop-by-hop drops

100Mbps 100Mbps

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 24

CS/ECE 438

TCP Internals

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

25

TCP Usage Model

Connection setup
— 3-way handshake

Data transport

— Sender writes data
- TCP
e Breaks data into segments
e Sends each segment over IP
e Retransmits, reorders and removes duplicates as necessary
— Receiver reads some data
Teardown

— 4 step exchange

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

26

TCP Connection Establishment

3-Way Handshake

Sequence Numbers

* JK Client Server
Message Types Sy o
e Synchronize (SYN) W
e Acknowledge (ACK)
Passive Open SYN K)x o) 3+
e Server listens for connection ac\mo\w\ed‘?'e
from client
Active Open A
e C(lient initiates connection to %
server

Time flows down

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 27

TCP Data Transport

Data broken into segments

Limited by maximum segment size (MSS)
Defaults to 352 bytes
Negotiable during connection setup

Typically set to

e MTU of directly connected network — size of TCP and IP
headers

Three events cause a segment to be sent

> MSS bytes of data ready to be sent
Explicit PUSH operation by application
Periodic timeout

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 28

TCP Byte Stream

Application Application
process process
Write Read
bytes bytes
TCP TCP

TCP Segment| |[TCP Segment|- - - [TCP Segment

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

TCP Connection Termination

Two generals problem

— Enemy camped in valley

— Two generals’ hills separated by enemy

— Communication by unreliable messengers

— Generals need to agree whether to attack or retreat

¥o'hiEe army

CS/ECE 438

Two generals problem

Can messages over an unreliable network be used to
guarantee two entities do something
simultaneously?

— No, even if all messages get through

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

31

TCP Connection Termination

Message Types
— Finished (FIN)
— Acknowledge (ACK)

Active Close W
— Sends no more data "

Passive close //A/O‘:K//
— Accepts no more data /
W

Time flows down

Client Server

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

32

TCP Segment Header Format

0 8

16

31

Source Port

Header Length 0

Flags

Destination Port

Advertised Window

TCP Checksum

Urgent Pointer

Options

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

33

TCP Segment Header Format

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length

0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 16-bit source and destination ports

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

34

TCP Segment Header Format

0 8

16

31

Source Port

Header Length 0

Flags

Destination Port

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 32-bit send and ACK sequence

numbers

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

35

TCP Segment Header Format

0 8

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length 0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 4-bit header length in 4-byte words

— Minimum 5 bytes
— Offset to first data byte

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

36

TCP Segment Header Format

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length

0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e Reserved

— Must be 0

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

37

TCP Segment Header Format

0 8 16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options
e 6 1-bit flags
URG: Contains urgent data
ACK: Valid ACK seq. number RST: Reset connection
SYN: Synchronize for setup

PSH: Do not delay data delivery
FIN:

Final segment for teardown

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

38

TCP Segment Header Format

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length

0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 16-bit advertised window
— Space remaining in receive window

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

39

TCP Segment Header Format

0 8 16 31
Source Port Destination Port

Sequence Number

ACK Sequence Number

Header Length 0 Flags Advertised Window
TCP Checksum Urgent Pointer
Options

e 16-bit checksum

— Uses IP checksum algorithm
— Computed on header, data and pseudo header

0 16 (TDP) TCP Segment Length

TCP Segment Header Format

16

31

Source Port

Destination Port

Seqguence Number

ACK Sequence Number

Header Length

0

Flags

Advertised Window

TCP Checksum

Urgent Pointer

Options

e 16-bit urgent data pointer

— IfURG =1

— Index of last byte of urgent data in segment

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

41

TCP Options

Negotiate maximum segment size (MSS)

— Each host suggests a value

— Minimum of two values is chosen

— Prevents IP fragmentation over first and last hops

Packet timestamp

— Allows RTT calculation for retransmitted packets

— Extends sequence number space for identification of stray
packets

Negotiate advertised window granularity

— Allows larger windows
— Good for routes with large bandwidth-delay products

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

42

TCP State Descriptions

CLOSED Disconnected

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK
FIN_WAIT _1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK'd

CLOSING Connection closed by both sides simultaneously
TIME_WAIT Wait for network to discard related packets

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 43

TCP State Transition Diagram

Active
open/SYN

CLOSED

Close

Passive open
SYN/SYN + ACK

Send/SYN

P
<«

SYN/SYN + ACK

ACK

Close/EIN Close/ACK «FSTABLISHED

| FIN/ACK
FIN_WAIT 1 FIN/ACK CLOSE_WAIT

ACKy CLOSING Close/FIN §

FIN_WAIT 2 >, FIN £ I ack LAST;@

> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 44

SYN + ACK/ACK

TCP State Transition Diagram

m local

Message from i Event from local Active
receiver/ ition application/ open/SYN
response sent ® Passive open message sent Close

mm) SYN/SYN + ACK

Send/SYN

P
<«

SYN/SYN + ACK

ACK

SYN + ACK/ACK

Close/EIN Close/ACK «FSTABLISHED
! EIN/ACK

FIN. WAIT 1 FIN/ACK CLOSE_WAIT
ACK} CLOSING Close/FIN §

FIN_WAIT 2 >, FIN £ I ack LAST;@

> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 45

TCP State Transition Diagram

e (Questions

— State transitions

e Describe the path taken by a server under normal
conditions

e Describe the path taken by a client under normal
conditions

e Describe the path taken assuming the client closes the
connection first

— TIME_WAIT state

e What purpose does this state serve

e Prove that at least one side of a connection enters this
state

e Explain how both sides might enter this state

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 46

TCP State Transition Diagram

Establishment under
normal conditions

Active
CLCBED open/SYN

Passive open

SYN/SYN + A

Send/SYN

ACK SYN/SYN + ACK

»~ SYN + ACK/ACK
ESTABLISHED

FIN/ACK

Close/FIN Close/FIN

FIN/ACK

FIN WAIT 1 CLOSE_WAIT
ACK] CLOSING Close/FIN |
FIN_ WAIT 2 ACK/ACK | ACK LAST ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 47

TCP State Transition Diagram

Lost ACK from
receiver?

Active
CILOIEED open/SYN

Passive open

SYN/SYN + A

Send/SYN

ACK SYN/SYN + ACK

ACK/ACK

Close/FIN Close/FIN

ESTABLISHED
FIN/ACK

FIN/ACK CLOSE_WAIT

ACK] CLOSING Close/FIN |
FIN_ WAIT 2 ACK/ACK | ACK LAST ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 48

TCP State Transition Diagram

Local send when in
LISTEN

Active
CILOIEED open/SYN

Passive open

SYN/SYN + A

Send/SYN

SYN/SYN + ACK
—_—

Close/FIN Close/F Never used

ACK/ACK

FIN/ACK

FIN/ACK

FIN WAIT 1 CLOSE_WAIT
ACK{ Close/FIN |
FIN_ WAIT 2 ACK/ACK | ACK LAST ACK
> TIME WAIT + ACK
FIN/ACK — i
Timeout CLOSED

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 49

TCP State Transition Diagram

Timeouts?

Active
— open/SYN

Passive open

Send/SYN

SYN/SYN + ACK
ey, -
Close/FIN Close/F it no response after
multiple tries, return I/ACK
FIN._ WAIT 1 ' to CLOSED CLOSE_WAIT

CLOSING Close/FIN |}
FIN.ZWAIT_2 D, T 0 | ACK LAST_ACK

> TIME WAIT + ACK
FIN/ACK - i
Timeout CLOSED

ACK/ACK

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 50

TCP State Transition Diagram

One side closes first .
Active

open/SYN

CLOSED

Close

Passive open
SYN/SYN + ACK

Send/SYN

P
<«

ACK SYN/SYN + ACK

SYN + ACK/ACK

ESTABLISHED
FIN/ACK

Close/FIN

@ FIN/ACK

AC CLOSING Close/FIN
EIN T
ACK/ACK + ACK @
TIME_ WAIT O ACK

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 51

TCP TIME_WALIT State

e Problem

— What happens if a segment from an old
connection arrives at a new connection?

e Maximum Segment Lifetime
— Max time an old segment can live in the Internet

e TIME_WAIT State

— Connection remains in this state from two times
the maximum segment lifetime

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

52

TCP State Transition Diagram

Both sides close at
the same time

Active
open/SYN

CLOSED

Close

Passive open
SYN/SYN + ACK

Send/SYN

P
<«

SYN/SYN + ACK

ACK
Close/FIN

SYN + ACK/ACK

Close/FIN ESTABLISHED

FIN/ACK

\4

FIN_WAIT 1 FIN/ACK CLOSE_WAIT
ACK} _CLOSING > Close/FIN |
FIN_WAIT 2 >, FIN £ ACK LAST;@
ACK

»C TIME WAIT !
FIN/ACK ~
Timeout CLOSED

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 53

TCP State

FIN_ACK received
(rare)

Passive open

SYN/SYN + ACK

Transition Diagram

Active
open/SYN

CLOSED

Close

Send/SYN

P
<«

ACK

Close/FIN Close/EIN

\

y

FIN/ACK

SYN/SYN + ACK

SYN + ACK/ACK

ESTABLISHED
FIN/ACK

FIN_WAIT 1 CLOSE_WAIT
ACKy CLOSING Close/FIN §
SN CLAST ACKD
FIN_WAIT_2 >, DIV =2 ‘ v_ACK\ LAST_ACK
»C_ TIME_WAIT ACK
FIN/ACK ~ =~ Timeou

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

t CLOSED

54

TCP Sliding Window Protocol

Sequence numbers
— Indices into byte stream

Initial Sequence Number
— Why not just use 07?

ACK sequence number

— Actually next byte expected as opposed to
last byte received

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

55

TCP Sliding Window Protocol

Advertised window
— Enables dynamic receive window size

Receive buffers

— Data ready for delivery to application until
requested

— QOut-of-order data to maximum buffer capacity

Sender buffers
— Unacknowledged data
— Unsent data out to maximum buffer capacity

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

56

TCP Sliding Window Protocol —
Sender Side

« LastByteAcked <= Last Byt eSent
« LastByteSent <= LastByteWitten
e Buffer bytes between Last Byt eAcked and Last Byt eWitten

Maximum buffer size

Advertised window

A A T

Data available, but
outside window

First unacknowledged byte Last byte sent

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

TCP Sliding Window Protocol —
Receiver Side

Last Byt eRead < Next Byt eExpect ed
Next Byt eExpected <= LastByteRcvd + 1
Buffer bytes between Next Byt eRead and Last Byt eRcvd

\ 4

A

Maximum buffer size

<

y Advertised window

\ 4

2+ 2+ '\/

Buffered, out-of-order data
Next byte expected (ACK value)
Next byte to be read by application

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

58

Flow Control vs. Congestion

Control
Flow control
— Preventing senders from overrunning the capacity of the
receivers

Congestion control

— Preventing too much data from being injected into the
network, causing switches or links to become overloaded

Which one does TCP provide?
TCP provides both

— Flow control based on advertised window
— Congestion control discussed later in class

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 59

TCP Flow Control: Receiver

Receive buffer size

— = MaxRcvBuUf f er
— LastByteRcvd - Last Byt eRead < = MaxRcvBuf

Advertised window
— = MaxRcvBuf - (NextByteExp - NextByteRead)

— Shrinks as data arrives and
— Grows as the application consumes data

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

60

TCP Flow Control: Sender

e Send buffer size
— = MaxSendBuf f er
— LastByteSent - LastByteAcked < = Advert W ndow

e FEffective buffer
— = AdvertWndow - (LastByteSent - LastByteAck)

— EffectiveWndow > 0 to send dat a

e Relationship between sender and receiver

— LastByteWitten - LastByteAcked < =
Max SendBuf f er

— Dbl ock sender I f (LastByteWitten -
Last Byt eAcked) + y > MaxSender Buffer

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 61

TCP Flow Control

Problem: Slow receiver application

— Advertised window goes to 0

— Sender cannot send more data

— Non-data packets used to update window

— Receiver may not spontaneously generate update or
update may be lost

Solution

— Sender periodically sends 1-byte segment, ignoring
advertised window of 0

— Eventually window opens
— Sender learns of opening from next ACK of 1-byte segment

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 62

TCP Flow Control

Problem: Application delivers tiny pieces of data to
TCP
— Example: telnet in character mode
— Each piece sent as a segment, returned as ACK
— Very inefficient
Solution
— Delay transmission to accumulate more data
— Nagle’s algorithm
e Send first piece of data
e Accumulate data until first piece ACK'd

Send accumulated data and restart accumulation
Not ideal for some traffic (e.g., mouse motion)

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 63

TCP Flow Control

Problem: Slow application reads data in tiny pieces
— Receiver advertises tiny window

— Sender fills tiny window

— Known as silly window syndrome

Solution

— Advertise window opening only when MSS or 2 of buffer is
available

— Sender delays sending until window is MSS or 2 of
receiver’s buffer (estimated)

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

64

TCP Bit Allocation Limitations

e Sequence numbers vs. packet lifetime

— Assumed that IP packets live less than 60
seconds

— (Can we send 232 bytes in 60 seconds?
— Less than an STS-12 line

o Advertised window vs. delay-bandwidth
— Only 16 bits for advertised window
— Cross-country RTT = 100 ms
— Adequate for only 5.24 Mbps!

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

65

TCP Sequence Numbers —

32-bit

Bandwidth Speed Time until wrap around
T1 1.5 Mbps 6.4 hours

Ethernet 10 Mbps 57 minutes

T3 45 Mbps 13 minutes

FDDI 100 Mbps | 6 minutes

STS-3 155 Mbps | 4 minutes

STS-12 622 Mbps | 55 seconds

STS-24 1.2 Gbps 28 seconds

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

66

TCP Advertised Window —

16-bit
Bandwidth Speed Delay x Bandwidth Product
T1 1.5Mbps |18 KB
Ethernet 10 Mbps 122 KB
T3 45 Mbps 549 KB
FDDI 100 Mbps | 1.2 MB
STS-3 155 Mbps | 1.8 MB
STS-12 622 Mbps | 7.4 MB
STS-24 1.2 Gbps |14.8 MB

CS/ECE 438

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

67

TCP Round Trip Time and

Timeout
e How should TCP setits e Estimating RTT
timeout value? — SampleRTT
— Longer than RTT e Measured time from
e But RTT varies segment transmission
until ACK receipt
— Too short . P
b ture ¢ e Will vary
remature timeou e Want smoother
* Unnecessary estimated RTT
retransmissions
~ Tool — Average several recent
00 long _ measurements
* Slow re?ccltlon to e Not just current
segment loss SampleRTT

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 68

TCP Adaptive Retransmission
Algorithm - Original

e Theory
— Estimate RTT
— Multiply by 2 to allow for variations

e Practice
— Use exponential moving average (a = 0.1 to 0.2)

— Estimate = (a) * measurement + (1- a) *
estimate

— Influence of past sample decreases exponentially
fast

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 69

TCP Adaptive Retransmission
Algorithm - Original

e Problem: What does an ACK really ACK?

— Was ACK in response to first, second, etc
transmission?

Sample
RTT

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

70

TCP Adaptive Retransmission
Algorithm — Karn-Partridge

e Algorithm

— Exclude retransmitted packets from RTT
estimate

— For each retransmission
e Double RTT estimate
e Exponential backoff from congestion

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 71

TCP Adaptive Retransmission
Algorithm — Karn-Partridge

e Problem
— Still did not handle variations well

— Did not solve network congestion
problems as well as desired

e At high loads round trip variance is high

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

72

RTT (milliseconds)

350 |

300

Example RTT Estimation

— ¢ SampleRTT ™ Estimated RTT

250

; | Mun I

N
o
o

=
a1
o

100

CS/ECE 438

50 ‘ ‘ 100
time (seconnds)

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

73

TCP Adaptive Retransmission
Algorithm — Jacobson

o Algorlthm

Estimate variance of RTT

e (Calculate mean interpacket RTT deviation to
approximate variance

e Use second exponential moving average
e Dev = (B) * |RTT_Est — Sample| + (1) * Dev
e [B=0.25 A=0.125 for RTT_est

— Use variance estimate as component of RTT
estimate

e Next RTT = RTT _Est + 4 * Dev
— Protects against high jitter

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 74

TCP Adaptive Retransmission
Algorithm — Jacobson

Notes

— Algorithm is only as good as the granularity of
the clock

— Accurate timeout mechanism is important for
congestion control

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009

75

1975
Three-way handshake
Raymond Tomlinson
In SIGCOMM 75

1974
TCP described by
Vint Cerf and Bob Kahn
In IEEE Trans Comm

*IIIIIIII
1975

CS/ECE 438

1980

Evolution of TCP

1984

Nagel’s algorithm
to reduce overhead
of small packets;
predicts congestion

collapse
1983
BSD Unix 4.2 1986 1988
supports TCP/IP Congestion Van Jacobson’s
collapse algorithms
observed congestion avoidance

1982

TCP & IP
RFC 793 & 791

© Robin Kravets & Matt Caesar, UIUC - Spring 2009

1985

round-trip time

1987
Karn’s algorithm 1990
to better estimate 4.3BSD Reno

fast retransmit

delayed ACK’s

4.3BSD Tahoe)

and congestion control
(most implemented in

1990

76

TCP Through the 1990s

1996
SACK TCP
(Floyd et al)
Selective
Acknowledgement
1993 1994 1996
TCP Vegas ECN Hoe
(Brakmo et al) (Floyd) NewReno startup
delay-based Explicit and loss recovery
congestion avoidance Congestion
Notification
1993 1994 1996

CS/ECE 438 © Robin Kravets & Matt Caesar, UIUC - Spring 2009 77

