
Lecture 8: 
Routing

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

March 3, 2010



Routing

Chicago

Danville

Indianapolis

Effingham

St. Louis

Springfield

Champaign

A tourist appears and
asks, “Chicago?”

Which way do you point? 



Routing

• Definition
– The task of constructing and maintaining 
forwarding information (in hosts or routers)

• Goals
– Capture the notion of “best” routes
– Propagate changes effectively
– Require limited information exchange

• Conceptually
– A network can be represented as a graph where 
each host/router is a node and each physical 
connection is a link



Routing

• Factors
– Network topology can change
– Traffic conditions can change

• Design elements
– Performance criteria
– Decision time and place
– Information source

• Goals
– Correctness
– Simplicity
– Robustness
– Fairness
– High throughput
– Low end-to-end latency



Routing: Ideal Approach

• Maintain information about each link

• Calculate fastest path between each directed 
pair

A
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For each 
direction, 
maintain:

•Bandwidth

•Latency

•Queueing 
delay



Routing: Ideal Approach

• Problems
– Unbounded amount of information
– Queueing delay can change rapidly
– Graph connectivity can change rapidly

• Solution
– Dynamic

• Periodically recalculate routes

– Distributed
• No single point of failure
• Reduced computation per node

– Abstract Metric
• “Distance” may combine many factors
• Use heuristics



Routing Overview

• Algorithms
– Static shortest path algorithms

• Bellman-Ford
– Based on local iterations

• Dijkstra’s algorithm
– Build tree from source

– Distributed, dynamic routing algorithms
• Distance vector routing

– Distributed Bellman-Ford

• Link state routing
– Implement Dijkstra’s algorithm at each node



Bellman-Ford Algorithm

• Concept
– Static centralized algorithm

• Given
– Directed graph with edge costs and destination 
node

• Finds
– Least cost path from each node to destination

• Multiple nodes
– To find shortest paths for multiple destination 
nodes, run entire Bellman-Ford algorithm once per 
destination



Bellman-Ford Algorithm

• Based on repetition of iterations

– For every node A and every neighbor B of A

• Is the cost of the path (A → B → → → destination) 
smaller than the currently known cost from A to 
destination?

• If YES

– Make B the successor node for A

– Update cost from A to destination

– Can run iterations synchronously or all at once



Bellman-Ford Algorithm
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Distance Vector Routing

• Distributed dynamic version of Bellman-Ford

• Each node maintains a table of
– <destination, distance, successor>

• Information acquisition
– Assume nodes initially know cost to immediate 
neighbor

– Nodes send <destination, distance> vectors to all 
immediate neighbors
• Periodically – seconds, minutes

• Whenever vector changes – triggered update



Distance Vector Routing

• When a route changes
– Local failure detection

• Control message not acknowledged

• Timeout on periodic route update

– Current route disappears

– Newly advertised route is shorter than previous route

• Used in
– Original ARPANET (until 1979)

– Early Internet: Routing Information Protocol (RIP)

– Early versions of DECnet and Novell IPX



Distance vector: 
update propagation
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Example - Initial Distances
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E Receives D’s Routes
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E Updates Cost to C
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A Receives B’s Routes
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A Updates Cost to C
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A Receives E’s Routes
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A Updates Cost to C and D
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Final Distances
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Final Distances After Link Failure
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View From a Node
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Count-to-infinity Problem
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C Sends Routes to B

A

25 1

B

C

B
C 2

1

dest cost

A
C 1

~

dest cost

A
B 1

2

dest cost



B Updates Distance to A
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B Sends Routes to C
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Distance Vector Routing

• Problem

– Node X notices that its link to Y is broken 

– Other nodes believe that the route through 
X is still good

– Mutual deception!



How Are These Loops Caused?

• Observation 1:

– B’s metric increases

• Observation 2:

– C picks B as next hop to A

– But, the implicit path from C to A includes 
itself!



Solution 1: Holddowns

• If metric increases, delay propagating 
information
– in our example, B delays advertising route

– C eventually thinks B’s route is gone, picks its own 
route

– B then selects C as next hop

• Adversely affects convergence

A

25 1

B
C



Heuristics for breaking loops

• Set infinity to 16
– Small limit allows fast completion of “counting to 
infinity”

– Limits the size of the network

• Split horizon
– Avoid counting to infinity by solving “mutual 
deception” problem

• Split horizon with poisoned reverse
– “Poison” the routes sent to you by your neighbors

• Sequence numbers on delay estimates



Split Horizon

• Avoid counting to infinity by solving “mutual 
deception” problem

• Distance Vector with split horizon:
– when sending an update to node X, do not include 
destinations that you would route through X

– If X thinks route is not through you, no effect
– If X thinks route is through you, X will timeout 
route

A
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B
C



Split Horizon and Poisoned 
Reverse

• Distance Vector with Split Horizon and Poisoned 
Reverse:
– When sending update to node X, include destinations that 

you would route through X with distance set to infinity

– Don’t need to wait for X to timeout

• Problem: 
– Router on edge of Internet would need to include infinity 

route for all outside destinations on Internet!

A
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Split Horizon

• Split Horizon (with or without poisoned reverse) may 
still allow some routing loops and counting to infinity
– guarantees no 2-node loops

– can still be fooled by 3-node (or larger) loops

• Consider link failure from C to D



Split Horizon

• Initial routing table entries for route to D:
A 2 via C

B 2 via C

C 1

• C notices link failure and changes to infinity

• Now C sends updates to A and B:
– to A: infinity

– to B: infinity
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Split Horizon

• Suppose update to B is lost

• New tables:
A unreachable

B 2 via C

C unreachable

• Now B sends its periodic routing update:
– to C: infinity (poisoned reverse)

– to A: 2

A
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Split Horizon

• New tables for route to D:
A 3 via B

B 2 via C

C unreachable

• Finally A sends its periodic routing update:
– to B: infinity (poisoned reverse)

– to C: 3

A
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D
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Split Horizon

• New tables for route to D:
A 3 via B

B 2 via C

C 4 via A

• A, B and C will still continue to count to 
infinity
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Example Where Split Horizon 
Fails

• Link breaks
– C marks D as unreachable 

and reports that to A and B.

• Suppose A learns it first. 
– A now thinks best path to D 

is through B. 
– A reports a route of cost=3 

to C.

• C thinks D is reachable 
through A at cost 4 and 
reports that to B.

• B reports a cost 5 to A who 
reports new cost to C.

• etc...
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Avoiding Counting to Infinity

• Select loop-free paths

• One way of doing this:
– Each route advertisement carries entire 
path

– If a router sees itself in path, it rejects the 
route

• BGP does it this way

• Space proportional to diameter



Loop Freedom at Every Instant

• Does keeping paths avoid all loops?

– No! Transient loops are still possible

– Why? Because path information may be 
stale

• Only way to fix this

– Ensure that you have up-to-date 
information by explicitly querying



Distance Vector in Practice

• RIP and RIP2
– uses split-horizon/poison reverse

• BGP/IDRP
– propagates entire path

– path also used for affecting policies

• AODV
– “on-demand” distance vector protocol for wireless 
networks

– Only maintain distance vectors along paths to 
destinations that you need to reach



Distance Vector Routing

• Problem

– Information propagates slowly

• One period per hop for new routes

• Count to infinity to detect lost routes



Dijkstra’s Algorithm

• Given

– Directed graph with edge weights 
(distances)

• Calculate

– Shortest paths from one node to all others



Dijkstra’s Algorithm

• Greedily grow set C of confirmed least cost paths

• Initially C = {source}

• Loop N-1 times

– Determine the node M outside C that is closest to the source

– Add M to C and update costs for each node P outside C

• Is the path (source → → … → M → P) better than the 
previously known path for (source → P)?

• If YES

– Update cost to reach P



Dijkstra’s Algorithm
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Example
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Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~

A F

B

D E

C2

2

2

3

1

1

1

3

5

5

B C D E F



Example
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Example
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Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
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Example
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Link State Routing

• Strategy
– Send all nodes information about directly connected links

– Status of links is flooded in link state packets (LSPs)

• Each LSP carries
– ID of node that created the LSP

– Vector of <neighbor, cost of link to neighbor> pairs for the 
node that created the LSP

– Sequence number

– Time-to-live (TTL)

• Each node maintains a list of (ideally all) LSP’s and 
runs Dijkstra’s algorithm on the list



Link state: update propagation
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Link state: route computation

B D

C E

A F

• Each router computes shortest path tree, rooted at that router

• Determines next-hop to each dest, publish to forwarding table

• Operators can assign link costs to control path selection



Link-state: packet forwarding

B D

C E

A FIP packet
source destination

• Downsides of link-state:
– Lesser control on policy (certain routes can’t be filtered), more cpu

– Increased visibility (bad for privacy, but good for diagnostics)



Link State Routing

• LSP must be delivered to all nodes

• Information acquisition via reliable flooding

– Create local LSP periodically with increasing sequence 
number

– Send local LSP to all immediate neighbors

– Forward LSP (if it has a new sequence number than 
previously received) out on all other links

• Why not just use TCP between every pair of routers?



Basic Steps

• Each node assumed to know state of 
links to its neighbors

• Step 1: Each node broadcasts its state 
to all other nodes

• Step 2: Each node locally computes 
shortest paths to all other nodes from 
global state



Reliable Flooding

• When i receives LSP from j:

– If LSP is the most recent LSP from j that i 
has seen so far

• i saves it in database and forwards a copy on 
all links except link LSP was received on

– Otherwise, discard LSP



Link State Routing

• At each router, perform a forward search 
algorithm (variation of Dijkstra’s)

• Router maintains two lists

– Confirmed (nodes I know the shortest paths to)

– Tentative (nodes that are adjacent to Confirmed 
nodes)

• Each list contains triplets

– <destination, cost, nexthop>



Link State Routing
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Link State Routing 
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Link State Routing 
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Link State Characteristics

• With consistent LSDBs, all nodes compute 
consistent loop-free paths

• Limited by Dijkstra computation overhead, 
space requirements

• Can still have transient loops
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may loop around BDC



Link State Routing

• Advertise routes to “IP prefixes” (blocks of IP 
addresses)

• Intermediate System-Intermediate System (IS-IS)
– Designed for DECnet

– Adopted by ISO for connectionless network layer protocol 
(CNLP)

– Used in NSFNET backbone

– Used in some ISPs, some digital cellular systems

• Open shortest path first (OSPF)
– Defined in RFC 5340

– Used in some ISPs



OSPF

• Authentication of routing messages
– Encrypted communication between routers

• Additional hierarchy
– Domains are split into areas

– Routers only need to know how to reach every 
node in a domain

– Routers need to know how to get to the right area

– Load balancing
• Allows traffic to be distributed over multiple routes



Hierarchical routing
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Hierarchical routing
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Tradeoffs of hierarchical routing

• Advantages: scalability

– Reduce size of link-state database

– Isolate rest of network from changes/faults

• Disadvantages

– Complexity

• Extra configuration effort 

• Requires tight coupling with address assignment

– Inefficiency

• One link change may affect multiple path costs

• Summarization hides shorter paths



LS vs. DV

• Distance Vector (DV) 
– Send everything you know to your neighbors

• Link State (LS) 
– Send info about your adjacent links to everyone

• Which one’s better?

• Message exchange
– LS: O(nE)

– DV: O(nd) for d destinations, worst-case O(d*n!)

– But per-node computation time less in DV



LS vs. DV

• LS typically used within ISPs because
– Faster convergence (usually)

– Simpler troubleshooting

• DV typically used between ISPs because
– Can support more flexible policies

– Can avoid exporting routes

– Can hide private regions of topology



LS vs. DV: Robustness

• LS can broadcast incorrect/corrupted LSP
• Localized problem

• But across multiple destinations

• DV can advertise incorrect paths to all 
destinations

• Incorrect calculation can spread to entire network

• But only for that destination

• Soft-state vs. Hard-state approaches
– Should we periodically refresh? Or rely on routers 
to locally maintain their state correctly?



Traffic engineering with routing 
protocols

• Load balancing 
– Some hosts/networks/paths are more popular 
than others

– Need to shift traffic to avoid overrunning capacity
• Why is this a different problem from congestion control?

• Avoiding oscillations
– What if metrics are a function of offered load?
– Causes dependencies across paths



Challenge #1: Avoiding 
oscillations

• Choice of link cost defines traffic load

– Low cost = high probability link belongs to 
SPT

– Will attract traffic, which increases cost

• Main problem: convergence

– Avoid oscillations

– Achieve good network utilization



Metrics

• Capture a general notion of distance

• A heuristic combination of

– Distance

– Bandwidth

– Average traffic

– Queue length

– Measured delay



Metric Choices

• Fixed metrics (e.g., hop count)
– Good only if links are homogeneous

– Definitely not the case in the Internet

• Static metrics do not take into account
– Link delay

– Link capacity

– Link load (hard to measure)

• But, can improve stability



Original ARPANET Algorithm

• Shortest-path routing based on link metrics

• Instantaneous queue length plus a constant

• Distance vector routing for shortest paths
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congested link



Original ARPANET Algorithm

• Light load
– Delay dominated by the constant part 
(transmission and propagation delay)

• Medium load
– Queuing delay no longer negligable

– Moderate traffic shifts to avoid congestion

• Heavy load
– Very high metrics on congested links

– Busy links look bad to all of the routers

– All routers avoid the busy links

– Routers may send packets on longer paths



Second ARPANET Algorithm 
(1979)

• Averaging of link metric over time
– Old: Instantaneous delay fluctuates a lot

– New: Averaging reduces the fluctuations

• Link-state protocol instead of DV
– Old: DV led to loops

– New: Flood metrics and let each router compute shortest 
paths

• Reduce frequency of updates
– Old: Sending updates on each change is too much

– New: Send updates if change passes a threshold



Problem #2: Load balancing

• Conventional static metrics:

– Proportional to physical distance

– Inversely proportional to link capacity

• Conventional dynamic metrics:

– Tune weights based on the offered traffic

– Network-wide optimization of link-weights

– Directly minimizes metrics like maximum link 
utilization



Traffic engineering in IP 
networks

• Question: given traffic loads arriving at the 
network, how can we assign costs to links, to 
achieve desired balance of traffic across 
routers?

• Formulated as an optimization problem
– Input parameters: network topology, input traffic 
matrix

– Input constraints: minimize delay, maintain 70% 
average spare capacity on links

– Compute: assignment of weights to links



Application to AT&T’s backbone 
network

• Performance of the optimized weights

– Search finds a good (approximate) solution within 
a few minutes

– Much better than link capacity or physical 
distance

• How AT&T changes the link weights

– Maintenance from Midnight to 6am ET

– Predict effects of removing links from network

– Reoptimize links to avoid congestion

– Configure new weights before disabling 
equipment (costing-out)


