
Lecture 8:
Routing

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

March 3, 2010

Routing

Chicago

Danville

Indianapolis

Effingham

St. Louis

Springfield

Champaign

A tourist appears and
asks, “Chicago?”

Which way do you point?

Routing

• Definition
– The task of constructing and maintaining
forwarding information (in hosts or routers)

• Goals
– Capture the notion of “best” routes
– Propagate changes effectively
– Require limited information exchange

• Conceptually
– A network can be represented as a graph where
each host/router is a node and each physical
connection is a link

Routing

• Factors
– Network topology can change
– Traffic conditions can change

• Design elements
– Performance criteria
– Decision time and place
– Information source

• Goals
– Correctness
– Simplicity
– Robustness
– Fairness
– High throughput
– Low end-to-end latency

Routing: Ideal Approach

• Maintain information about each link

• Calculate fastest path between each directed
pair

A

CB

D

G

F

E

For each
direction,
maintain:

•Bandwidth

•Latency

•Queueing
delay

Routing: Ideal Approach

• Problems
– Unbounded amount of information
– Queueing delay can change rapidly
– Graph connectivity can change rapidly

• Solution
– Dynamic

• Periodically recalculate routes

– Distributed
• No single point of failure
• Reduced computation per node

– Abstract Metric
• “Distance” may combine many factors
• Use heuristics

Routing Overview

• Algorithms
– Static shortest path algorithms

• Bellman-Ford
– Based on local iterations

• Dijkstra’s algorithm
– Build tree from source

– Distributed, dynamic routing algorithms
• Distance vector routing

– Distributed Bellman-Ford

• Link state routing
– Implement Dijkstra’s algorithm at each node

Bellman-Ford Algorithm

• Concept
– Static centralized algorithm

• Given
– Directed graph with edge costs and destination
node

• Finds
– Least cost path from each node to destination

• Multiple nodes
– To find shortest paths for multiple destination
nodes, run entire Bellman-Ford algorithm once per
destination

Bellman-Ford Algorithm

• Based on repetition of iterations

– For every node A and every neighbor B of A

• Is the cost of the path (A → B → → → destination)
smaller than the currently known cost from A to
destination?

• If YES

– Make B the successor node for A

– Update cost from A to destination

– Can run iterations synchronously or all at once

Bellman-Ford Algorithm

A

D

B

E

C

Destination

∞∞∞∞ ∞∞∞∞ ∞∞∞∞

∞∞∞∞ ∞∞∞∞

∞∞∞∞ ∞∞∞∞

∞∞∞∞

1 Dest

5 Dest

∞∞∞∞ 3 C 1 Dest

7 E 5 Dest

8 D 3 C 1 Dest

7 E 4 B

8 D 3 C 1 Dest

6 E 4 B

7 D 3 C 1 Dest

6 E 4 B

5

1

6

2

1

2

1

Distance Vector Routing

• Distributed dynamic version of Bellman-Ford

• Each node maintains a table of
– <destination, distance, successor>

• Information acquisition
– Assume nodes initially know cost to immediate
neighbor

– Nodes send <destination, distance> vectors to all
immediate neighbors
• Periodically – seconds, minutes

• Whenever vector changes – triggered update

Distance Vector Routing

• When a route changes
– Local failure detection

• Control message not acknowledged

• Timeout on periodic route update

– Current route disappears

– Newly advertised route is shorter than previous route

• Used in
– Original ARPANET (until 1979)

– Early Internet: Routing Information Protocol (RIP)

– Early versions of DECnet and Novell IPX

Distance vector:
update propagation

B D

C E

A F

(F,0)

(F,0)

(F,1)

(F,1)

(F,1) (F,1)(F,2)(F,2)

(F,2)

(F,2)

F tells D: I am F, and
I can reach F via 0 hops

D tells B: I am D, and
I can reach F via 1 hop

1FF
DistNextHopDest

D’s forwarding table

2DF
DistNextHopDest

B’s forwarding table

source destination

Example - Initial Distances

Info at
node

A
B

C

D

A B C

0 7 ~

7 0 1
~ 1 0

~ ~ 2

Distance to node

D

~

~
2

0

E 1 8 ~ 2

1

8
~

2

0

E

A

B

E

C

D

7

1

1

2

28

E Receives D’s Routes

Info at
node

A
B

C

D

A B C

0 7 ~

7 0 1
~ 1 0

~ ~ 2

Distance to node

D

~

~
2

0

E 1 8 ~ 2

1

8
~

2

0

E

A

B

E

C

D

7

1

1

2

28

E Updates Cost to C

A

B

E

C

D

7

1

1

2

28

Info at
node

A
B

C

D

A B C

0 7 ~

7 0 1
~ 1 0

~ ~ 2

Distance to node

D

~

~
2

0

E 1 8 4 2

1

8
~

2

0

E

A Receives B’s Routes

Info at
node

A
B

C

D

A B C

0 7 ~

7 0 1
~ 1 0

~ ~ 2

Distance to node

D

~

~
2

0

E 1 8 4 2

1

8
~

2

0

E

A

B

E

C

D

7

1

1

2

28

A Updates Cost to C

A

B

E

C

D

7

1

1

2

28

Info at
node

A
B

C

D

A B C

0 7 8

7 0 1
~ 1 0

~ ~ 2

Distance to node

D

~

~
2

0

E 1 8 4 2

1

8
~

2

0

E

A Receives E’s Routes

Info at
node

A
B

C

D

A B C

0 7 8

7 0 1
~ 1 0

~ ~ 2

Distance to node

D

~

~
2

0

E 1 8 4 2

1

8
~

2

0

E

A

B

E

C

D

7

1

1

2

28

A Updates Cost to C and D

A

B

E

C

D

7

1

1

2

28

Info at
node

A
B

C

D

A B C

0 7 5

7 0 1
~ 1 0

~ ~ 2

Distance to node

D

3

~
2

0

E 1 8 4 2

1

8
~

2

0

E

Final Distances

Info at
node

A
B

C

D

A B C

0 6 5

6 0 1
5 1 0

3 3 2

Distance to node

D

3

3
2

0

E 1 5 4 2

1

5
4

2

0

E

A

B C

D

7

1

1

2

28

E

Final Distances After Link Failure

Info at
node

A
B

C

D

A B C

0 7 8
7 0 1

8 1 0

10 3 2

Distance to node

D

10
3

2

0

E 1 8 9 11

1
8

9

11

0

E

A

B C

D

7

1

1

2

28

E

View From a Node

dest

A
B

C

D

A B D

1 14 5

7 8 5
6 9 4

4 11 2

Next hop

E’s routing table

A

B

E

C

D

7

1

1

2

28

Count-to-infinity Problem

A

25

1

1

B

C

B
C 2

1

dest cost

A
C 1

1

dest cost

A
B 1

2

dest cost

C Sends Routes to B

A

25 1

B

C

B
C 2

1

dest cost

A
C 1

~

dest cost

A
B 1

2

dest cost

B Updates Distance to A

A

25 1

B

C

B
C 2

1

dest cost

A
C 1

3

dest cost

A
B 1

2

dest cost

Really through B

B Sends Routes to C

A

25 1

B

C

B
C 2

1

dest cost

A
C 1

3

dest cost

A
B 1

4

dest cost

C Sends Routes to B

A

25 1

B

C

B
C 2

1

dest cost

A
C 1

5

dest cost

A
B 1

4

dest cost

Distance Vector Routing

• Problem

– Node X notices that its link to Y is broken

– Other nodes believe that the route through
X is still good

– Mutual deception!

How Are These Loops Caused?

• Observation 1:

– B’s metric increases

• Observation 2:

– C picks B as next hop to A

– But, the implicit path from C to A includes
itself!

Solution 1: Holddowns

• If metric increases, delay propagating
information
– in our example, B delays advertising route

– C eventually thinks B’s route is gone, picks its own
route

– B then selects C as next hop

• Adversely affects convergence

A

25 1

B
C

Heuristics for breaking loops

• Set infinity to 16
– Small limit allows fast completion of “counting to
infinity”

– Limits the size of the network

• Split horizon
– Avoid counting to infinity by solving “mutual
deception” problem

• Split horizon with poisoned reverse
– “Poison” the routes sent to you by your neighbors

• Sequence numbers on delay estimates

Split Horizon

• Avoid counting to infinity by solving “mutual
deception” problem

• Distance Vector with split horizon:
– when sending an update to node X, do not include
destinations that you would route through X

– If X thinks route is not through you, no effect
– If X thinks route is through you, X will timeout
route

A

25 1

B
C

Split Horizon and Poisoned
Reverse

• Distance Vector with Split Horizon and Poisoned
Reverse:
– When sending update to node X, include destinations that

you would route through X with distance set to infinity

– Don’t need to wait for X to timeout

• Problem:
– Router on edge of Internet would need to include infinity

route for all outside destinations on Internet!

A

25 1

B
C

A
C D

B

1

11
∞∞∞∞

A
C D

B

1

11
1

Split Horizon

• Split Horizon (with or without poisoned reverse) may
still allow some routing loops and counting to infinity
– guarantees no 2-node loops

– can still be fooled by 3-node (or larger) loops

• Consider link failure from C to D

Split Horizon

• Initial routing table entries for route to D:
A 2 via C

B 2 via C

C 1

• C notices link failure and changes to infinity

• Now C sends updates to A and B:
– to A: infinity

– to B: infinity

A
C D

B

1

11
∞∞∞∞

D = ∞∞∞∞

D = ∞∞∞∞

Split Horizon

• Suppose update to B is lost

• New tables:
A unreachable

B 2 via C

C unreachable

• Now B sends its periodic routing update:
– to C: infinity (poisoned reverse)

– to A: 2

A
C D

B

1

11
∞∞∞∞

D = ∞∞∞∞

D = ∞∞∞∞

⊗⊗⊗⊗D = ∞∞∞∞

D
 =

 2

Split Horizon

• New tables for route to D:
A 3 via B

B 2 via C

C unreachable

• Finally A sends its periodic routing update:
– to B: infinity (poisoned reverse)

– to C: 3

A
C D

B

1

11
∞∞∞∞

D = 3

D
 =

 ∞∞ ∞∞

Split Horizon

• New tables for route to D:
A 3 via B

B 2 via C

C 4 via A

• A, B and C will still continue to count to
infinity

A
C D

B

1

11
∞∞∞∞

Example Where Split Horizon
Fails

• Link breaks
– C marks D as unreachable

and reports that to A and B.

• Suppose A learns it first.
– A now thinks best path to D

is through B.
– A reports a route of cost=3

to C.

• C thinks D is reachable
through A at cost 4 and
reports that to B.

• B reports a cost 5 to A who
reports new cost to C.

• etc...

1

11

1

A B

C

D

Avoiding Counting to Infinity

• Select loop-free paths

• One way of doing this:
– Each route advertisement carries entire
path

– If a router sees itself in path, it rejects the
route

• BGP does it this way

• Space proportional to diameter

Loop Freedom at Every Instant

• Does keeping paths avoid all loops?

– No! Transient loops are still possible

– Why? Because path information may be
stale

• Only way to fix this

– Ensure that you have up-to-date
information by explicitly querying

Distance Vector in Practice

• RIP and RIP2
– uses split-horizon/poison reverse

• BGP/IDRP
– propagates entire path

– path also used for affecting policies

• AODV
– “on-demand” distance vector protocol for wireless
networks

– Only maintain distance vectors along paths to
destinations that you need to reach

Distance Vector Routing

• Problem

– Information propagates slowly

• One period per hop for new routes

• Count to infinity to detect lost routes

Dijkstra’s Algorithm

• Given

– Directed graph with edge weights
(distances)

• Calculate

– Shortest paths from one node to all others

Dijkstra’s Algorithm

• Greedily grow set C of confirmed least cost paths

• Initially C = {source}

• Loop N-1 times

– Determine the node M outside C that is closest to the source

– Add M to C and update costs for each node P outside C

• Is the path (source → → … → M → P) better than the
previously known path for (source → P)?

• If YES

– Update cost to reach P

Dijkstra’s Algorithm

1

1

2
9

7

4

33

3

4

22

6

62

3

1

8
10

7

2

22

1

7

6

6

4

9

7

11

11

1513

12

Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~

A F

B

D E

C2

2

2

3

1

1

1

3

5

5

B C D E F

Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~

A F

B

D E

C2

2

2

3

1

1

1

3

5

5

B C D E F

Example

A F

B

D E

C2

2

2

3

1

1

1

3

5

5

B C D E F
step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)

0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E

Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E

A F

B

D E

C2

2

2

3

1

1

1

3

5

5

B C D E F

Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E
4 ADEBC 4, E

A F

B

D E

C2

2

2

3

1

1

1

3

5

5

B C D E F

Example

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E
4 ADEBC 4, E

A F

B

D E

C2

2

2

3

1

1

1

3

5

5

B C D E F

Link State Routing

• Strategy
– Send all nodes information about directly connected links

– Status of links is flooded in link state packets (LSPs)

• Each LSP carries
– ID of node that created the LSP

– Vector of <neighbor, cost of link to neighbor> pairs for the
node that created the LSP

– Sequence number

– Time-to-live (TTL)

• Each node maintains a list of (ideally all) LSP’s and
runs Dijkstra’s algorithm on the list

Link state: update propagation

B D

C E

A F

[E,F]

[E,F]

[E,F]

[E,F]

[E,F] [E,F][E,F][E,F]

[E,F]

[E,F]

• How to prevent update loops: (seq numbers)

• How to bring up new node: (load TDB from neighbor)

[D,F]

[D,F]

[D,F]

[D,F]

[D,F] [D,F][D,F][D,F]

[D,F]

[D,F]

[C,A]

[C,A]

[C,A]

[C,A]

[C,A] [C,A][C,A][C,A]

[C,A]

[C,A]

[C,E]

[C,E]

[C,E]

[C,E]

[C,E] [C,E][C,E][C,E]

[C,E]

[C,E]

[C,B]

[C,B]

[C,B]

[C,B]

[C,B] [C,B][C,B][C,B]

[C,B]

[C,B]

[A,B]

[A,B]

[A,B]

[A,B]

[A,B] [A,B][A,B][A,B]

[A,B]

[A,B]

[B,D]

[B,D]

[B,D]

[B,D]

[B,D] [B,D][B,D][B,D]

[B,D]

[B,D]

[D,E]

[D,E]

[D,E]

[D,E]

[D,E] [D,E][D,E][D,E]

[D,E]

[D,E]

F tells all routers:
there is a link
between F and E

Each node maintains
a “topology database”

Link state: route computation

B D

C E

A F

• Each router computes shortest path tree, rooted at that router

• Determines next-hop to each dest, publish to forwarding table

• Operators can assign link costs to control path selection

Link-state: packet forwarding

B D

C E

A FIP packet
source destination

• Downsides of link-state:
– Lesser control on policy (certain routes can’t be filtered), more cpu

– Increased visibility (bad for privacy, but good for diagnostics)

Link State Routing

• LSP must be delivered to all nodes

• Information acquisition via reliable flooding

– Create local LSP periodically with increasing sequence
number

– Send local LSP to all immediate neighbors

– Forward LSP (if it has a new sequence number than
previously received) out on all other links

• Why not just use TCP between every pair of routers?

Basic Steps

• Each node assumed to know state of
links to its neighbors

• Step 1: Each node broadcasts its state
to all other nodes

• Step 2: Each node locally computes
shortest paths to all other nodes from
global state

Reliable Flooding

• When i receives LSP from j:

– If LSP is the most recent LSP from j that i
has seen so far

• i saves it in database and forwards a copy on
all links except link LSP was received on

– Otherwise, discard LSP

Link State Routing

• At each router, perform a forward search
algorithm (variation of Dijkstra’s)

• Router maintains two lists

– Confirmed (nodes I know the shortest paths to)

– Tentative (nodes that are adjacent to Confirmed
nodes)

• Each list contains triplets

– <destination, cost, nexthop>

Link State Routing

B

D

A C
11

2

3

10

5

Find paths from D
to all other nodes

Link State Routing

B

D

A C
11

2

3
10

5

3.

4.

2.

1.

TentativeConfirmedStep

7

6

5

TentativeConfirmedStep

Link State Routing

B

D

A C
11

2

3
10

5

(B,11,B)(D,0,-)

(C,2,C)

3.

(B,5,C)

(A,12,C)

(D,0,-)

(C,2,C)

4.

(B,11,B)

(C,2,C)

(D,0,-)2.

1.

TentativeConfirmedStep

(D,0,-)

(C,2,C)

(B,5,C)

(A,10,C)

7

(A,10,C)(D,0,-)

(C,2,C)

(B,5,C)

6

(A,12,C)(D,0,-)

(C,2,C)

(B,5,C)

5

TentativeConfirmedStep

(D,0,-)

Link State Characteristics

• With consistent LSDBs, all nodes compute
consistent loop-free paths

• Limited by Dijkstra computation overhead,
space requirements

• Can still have transient loops

A

B

C

D

1
3

5 2

1

Packet from C->A
may loop around BDC

Link State Routing

• Advertise routes to “IP prefixes” (blocks of IP
addresses)

• Intermediate System-Intermediate System (IS-IS)
– Designed for DECnet

– Adopted by ISO for connectionless network layer protocol
(CNLP)

– Used in NSFNET backbone

– Used in some ISPs, some digital cellular systems

• Open shortest path first (OSPF)
– Defined in RFC 5340

– Used in some ISPs

OSPF

• Authentication of routing messages
– Encrypted communication between routers

• Additional hierarchy
– Domains are split into areas

– Routers only need to know how to reach every
node in a domain

– Routers need to know how to get to the right area

– Load balancing
• Allows traffic to be distributed over multiple routes

Hierarchical routing

A

B

C

H

G

D

E

I

J

M

P

O

A

B

C

H

G

D

E
I

J

M

P

O

In regular link-state,
routers maintain map
of entire topology

Hierarchical routing

A

B

C

H

G

D

E

I

J

M

P

O

A

H

G

I

J

M

P

O

Routers summarize paths
across areas as “virtual links”

Aggregate groups of
routers into “areas”

“Border routers” generate
“summary LSPs” to
reach other border routers

Tradeoffs of hierarchical routing

• Advantages: scalability

– Reduce size of link-state database

– Isolate rest of network from changes/faults

• Disadvantages

– Complexity

• Extra configuration effort

• Requires tight coupling with address assignment

– Inefficiency

• One link change may affect multiple path costs

• Summarization hides shorter paths

LS vs. DV

• Distance Vector (DV)
– Send everything you know to your neighbors

• Link State (LS)
– Send info about your adjacent links to everyone

• Which one’s better?

• Message exchange
– LS: O(nE)

– DV: O(nd) for d destinations, worst-case O(d*n!)

– But per-node computation time less in DV

LS vs. DV

• LS typically used within ISPs because
– Faster convergence (usually)

– Simpler troubleshooting

• DV typically used between ISPs because
– Can support more flexible policies

– Can avoid exporting routes

– Can hide private regions of topology

LS vs. DV: Robustness

• LS can broadcast incorrect/corrupted LSP
• Localized problem

• But across multiple destinations

• DV can advertise incorrect paths to all
destinations

• Incorrect calculation can spread to entire network

• But only for that destination

• Soft-state vs. Hard-state approaches
– Should we periodically refresh? Or rely on routers
to locally maintain their state correctly?

Traffic engineering with routing
protocols

• Load balancing
– Some hosts/networks/paths are more popular
than others

– Need to shift traffic to avoid overrunning capacity
• Why is this a different problem from congestion control?

• Avoiding oscillations
– What if metrics are a function of offered load?
– Causes dependencies across paths

Challenge #1: Avoiding
oscillations

• Choice of link cost defines traffic load

– Low cost = high probability link belongs to
SPT

– Will attract traffic, which increases cost

• Main problem: convergence

– Avoid oscillations

– Achieve good network utilization

Metrics

• Capture a general notion of distance

• A heuristic combination of

– Distance

– Bandwidth

– Average traffic

– Queue length

– Measured delay

Metric Choices

• Fixed metrics (e.g., hop count)
– Good only if links are homogeneous

– Definitely not the case in the Internet

• Static metrics do not take into account
– Link delay

– Link capacity

– Link load (hard to measure)

• But, can improve stability

Original ARPANET Algorithm

• Shortest-path routing based on link metrics

• Instantaneous queue length plus a constant

• Distance vector routing for shortest paths

3
2

2

1

1
3

1

5

20
congested link

Original ARPANET Algorithm

• Light load
– Delay dominated by the constant part
(transmission and propagation delay)

• Medium load
– Queuing delay no longer negligable

– Moderate traffic shifts to avoid congestion

• Heavy load
– Very high metrics on congested links

– Busy links look bad to all of the routers

– All routers avoid the busy links

– Routers may send packets on longer paths

Second ARPANET Algorithm
(1979)

• Averaging of link metric over time
– Old: Instantaneous delay fluctuates a lot

– New: Averaging reduces the fluctuations

• Link-state protocol instead of DV
– Old: DV led to loops

– New: Flood metrics and let each router compute shortest
paths

• Reduce frequency of updates
– Old: Sending updates on each change is too much

– New: Send updates if change passes a threshold

Problem #2: Load balancing

• Conventional static metrics:

– Proportional to physical distance

– Inversely proportional to link capacity

• Conventional dynamic metrics:

– Tune weights based on the offered traffic

– Network-wide optimization of link-weights

– Directly minimizes metrics like maximum link
utilization

Traffic engineering in IP
networks

• Question: given traffic loads arriving at the
network, how can we assign costs to links, to
achieve desired balance of traffic across
routers?

• Formulated as an optimization problem
– Input parameters: network topology, input traffic
matrix

– Input constraints: minimize delay, maintain 70%
average spare capacity on links

– Compute: assignment of weights to links

Application to AT&T’s backbone
network

• Performance of the optimized weights

– Search finds a good (approximate) solution within
a few minutes

– Much better than link capacity or physical
distance

• How AT&T changes the link weights

– Maintenance from Midnight to 6am ET

– Predict effects of removing links from network

– Reoptimize links to avoid congestion

– Configure new weights before disabling
equipment (costing-out)

