
Lecture 4:
Reliability

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

February 12, 2010

CS/ECE 438 © UIUC - Spring 2009 2

Reliable Transmission

Hello!

My

computer’s

name

is

Alice.

Hello!

Alice.

Alice Bob

CS/ECE 438 © UIUC - Spring 2009 3

Reliable Transmission

Hello!

My

Computer’s

name

is

Alice.

My

name

is

Alice.Alice Bob

CS/ECE 438 © UIUC - Spring 2009 4

Reliable Transmission

• Suppose error protection identifies
valid and invalid packets

• Can we make the channel appear
reliable?
– Insure packet delivery

– Maintain packet order
• Doesn’t have to be in order on the line, but
should be in order when delivered to
application

– Provide reliability at full link capacity

Reliable Transmission Outline

• Fundamentals of Automatic Repeat reQuest
(ARQ) algorithms
– A family of algorithms that provide reliability

through retransmission

• ARQ algorithms (simple to complex)
– stop-and-wait
– concurrent logical channels
– sliding window

• go-back-n
• selective repeat

• Alternative: forward error correction (FEC)

CS/ECE 438 © UIUC - Spring 2009 5

CS/ECE 438 © UIUC - Spring 2009 6

Terminology

• Acknowledgement (ACK)
– Receiver tells the sender when a frame is

received
• Selective acknowledgement (SACK)

– Specifies set of frames received

• Cumulative acknowledgement (ACK)
– Have received specified frame and all previous

• Negative acknowledgement (NAK)
– Receiver refuses to accept frame now,

e.g., when out of buffer space

CS/ECE 438 © UIUC - Spring 2009 7

Terminology

• Timeout (TO)

– Sender decides the frame (or ACK) was
lost

– Sender can try again

• ARQ also called Positive
Acknowledgement with Retransmission
(PAR)

CS/ECE 438 © UIUC - Spring 2009 8

Stop-and-Wait

• Basic idea

1. Send a frame

2. Wait for an ACK or TO

3. If TO, go to 1

4. If ACK, get new frame, go to 1

CS/ECE 438 © UIUC - Spring 2009 9

Stop-and-Wait: Success

Sender

Frame

ACK
T

im
eo

ut

T
im

e

Receiver

RTT

What can go
wrong?

How will it affect
our protocol?

How long should
the timeout be?

CS/ECE 438 © UIUC - Spring 2009 10

Stop-and-Wait: Lost Frame

Sender

T
im

eo
ut

T
im

e

Receiver

Frame

ACK

Frame

T
im

eo
ut

RTT

CS/ECE 438 © UIUC - Spring 2009 11

Stop-and-Wait: Lost ACK

Sender

T
im

eo
ut

T
im

e

Receiver

Frame

ACK

T
im

eo
ut

Frame

ACK

RTT

CS/ECE 438 © UIUC - Spring 2009 12

Stop-and-Wait: Delayed Frame

Sender

T
im

eo
ut

T
im

e

Receiver

T
im

eo
ut

Frame

ACK

Frame

ACK

RTT

How can receiver
distinguish between

two frames?

Sequence numbers

How many bits do you
need for sequence

numbers?

Just one is enough

CS/ECE 438 © UIUC - Spring 2009 13

Stop-and-Wait

• Goal
– Guaranteed at-most-once delivery

• Protocol Challenges
– Dropped frame/ACK

– Duplicate frame/ACK

• Requirements
– 1-bit sequence numbers (if physical network

maintains order)
• sender tracks frame ID to send

• receiver tracks next frame ID expected

CS/ECE 438 © UIUC - Spring 2009 14

Stop-and-Wait State Diagram

Expect: ?

Send: ?

Send: 1

Expect: 0

Expect: 1

Send: 0

Send: 1

Expect: 1

Receive frame
0

Receive frame
1

Receive
ACK 1

Receive
ACK 0

Receive ACK 1

Receive frame
0

Expect: 0

Send: 0

Receiver

Sender

CS/ECE 438 © UIUC - Spring 2009 15

Stop-and-Wait

• We have achieved
– Frames delivered reliably and in order
– Is that enough?

• Problem
– Only allows one outstanding frame

• Does not keep the pipe full

– Example
• 100ms RTT
• One frame per RTT = 1KB
• 1024x8x10 = 81920 kbps
• Regardless of link bandwidth!

CS/ECE 438 © UIUC - Spring 2009 16

Concurrent Logical Channels

• Used in ARPANET IMP-IMP protocol
• Idea

– Multiplex logical channels over a physical link
• Include channel ID in header

– Use stop-and-wait for each channel

• Result
– Each channel is limited to stop-and-wait

bandwidth
– Aggregate bandwidth uses full physical channel
– Supports multiple communicating processes
– Can use more than one channel per process

CS/ECE 438 © UIUC - Spring 2009 17

Concurrent Logical Channels

• Problems
– Reordering: if application has 3 channels,

and one undergoes a retransmission, it
will always be one packet behind other
channels

– Use of a single channel per process may
waste BW

– Use of multiple channel per process does
not maintain packet ordering across
channels!

CS/ECE 438 © UIUC - Spring 2009 18

ARQ: Where are We?

• Goals for reliable transmission
– Make channel appear reliable
– Maintain packet order (usually)
– Impose low overhead/allow full use of link

• Stop-and-Wait
– Provides reliable in-order delivery
– Sacrifices performance

• Concurrent Logical Channels
– Provides reliable delivery at full link bandwidth
– Sacrifices packet ordering

• Sliding Window Protocol
– Achieves all three!

CS/ECE 438 © UIUC - Spring 2009 19

Sliding Window Protocol

• Most important and general ARQ algorithm
• Used by TCP
• Outline

– Concepts
– Terminology (from P&D)
– Details
– Code example
– Proof of eventual in-order delivery
– Classification scheme

• (go-back-n, selective repeat)

• Example animation…

CS/ECE 438 © UIUC - Spring 2009 20

Keeping the Pipe Full

ReceiverSender

Frame

ACKT
im

e

Frame
Frame
Frame

ReceiverSender

Frame

ACK

T
im

e

Frame

ACK
Frame

ACK
Frame

ACK

�Advantages:
�More frames in pipe
�Less time overall
�Piggybacked ACKs

Stop-and-Wait Sliding Window

CS/ECE 438 © UIUC - Spring 2009 21

Concepts

• Consider an ordered stream of data frames

• Stop-and-Wait

– Window of one frame

– Slides along stream over time

Time

CS/ECE 438 © UIUC - Spring 2009 22

Concepts

• Sliding Window Protocol

– Multiple-frame send window

– Multiple frame receive window

Time

CS/ECE 438 © UIUC - Spring 2009 23

Sliding Window

• Send Window

– Fixed length

– Starts at earliest unacknowledged frame

– Only frames in window are active

Time

Sent and
acknowledged

Sent and not
acknowledged

Available, outside
send window Unavailable

CS/ECE 438 © UIUC - Spring 2009 24

Sliding Window

• Receive Window

– Fixed length (unrelated to send window)

– Starts at earliest frame not received

– Only frames in window accepted

Received and
acknowledged

Received and not
acknowledged

Received, outside
receive window Not yet received

Time

CS/ECE 438 © UIUC - Spring 2009 25

Sliding Window Terminology

• Sender Parameters

– Send Window Size (SWS)

– Last Acknowledgement Received (LAR)

– Last Frame Sent (LFS)

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Invariant: LFS – LAR ≤≤≤≤ SWS

CS/ECE 438 © UIUC - Spring 2009 26

Sliding Window Terminology

• Receiver Parameters

– Receive Window Size (RWS)

– Next Frame Expected (NFE)

– Last Frame Acceptable (LFA)

RWS = 6

NFE = 4 LFA = 9 Invariant: LFA – NFE + 1 ≤≤≤≤ RWS

2 3 5 7 10 11 12 13

Time

4 6 8 9

CS/ECE 438 © UIUC - Spring 2009 27

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

What happens if we

Receive ACK for 16?

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

TimeSWS = 4

LAR = 16 LFS = 20

13 17 18 19 20 21 22 23 24

Time

14 15 16

Sliding Window Details

• Sender Tasks

– Assign sequence numbers

– On ACK Arrival

• Advance LAR

• Slide window

CS/ECE 438 © UIUC - Spring 2009 28

Sliding Window Details

• Receiver Tasks

– On Frame Arrival (N)

• Silently discard if outside of window

– N < NFE (NACK possible, too)

– N >= NFE + RWS

• Send cumulative ACK if within window

RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Receive Frame 6

Send ACK 3

Receive Frame 4

64

Send ACK 7

CS/ECE 438 © UIUC - Spring 2009 29

Sliding Window Details

• Receiver Tasks

– On Frame Arrival (N)

• Silently discard if outside of window

– N < NFE (NACK possible, too)

– N >= NFE + RWS

• Send cumulative ACK if within window

RWS = 6

NFE = 8 LFA = 13

2 3 7 10 11 12 13

Time

4 8 95 6

CS/ECE 438 © UIUC - Spring 2009 30

Sliding Window Details

• Sequence number space

– Finite number, so wrap around

– Need space larger than SWS (outstanding
frames)

• In fact, need twice as large

• Example

– 3-bit sequence numbers (0-7)

– RWS = SWS = 7

– Why isn’t 3 bits enough (can you think of
an example where it doesn’t work?)

CS/ECE 438 © UIUC - Spring 2009 31

Sliding Window Details

• Is log2(SWS+1) bits enough?
– No. Example:

– 3-bit sequence numbers (0-7)

– RWS = SWS = 7

– Why isn’t 3 bits enough (can you
think of an example where it doesn’t
work?)

• We’ll see later that:
– If packets can’t get re-ordered on

the line

– Then having
log2(max(SWS,RWS)*2) bits is
enough

Send(0)
Send(1)
Send(2)
Send(3)
Send(4)
Send(5)
Send(6)

ACK(0)
ACK(1)
ACK(2)
ACK(3)
ACK(4)
ACK(5)
ACK(6)

Send(0)
Send(1)
Send(2)
Send(3)
Send(4)
Send(5)
Send(6)

Timeout

CS/ECE 438 © UIUC - Spring 2009 32

Sliding Window Details

• Example of incorrect behavior

– 3-bit sequence numbers 0-7

– RWS = SWS = 7

– Sender transmits 0-6

– All arrive, but ACK’s lost

– Sender retransmits

– Receiver accepts as second incarnation of
0-6

CS/ECE 438 © UIUC - Spring 2009 33

Sliding Window Sequence
Numbers

• How many sequence numbers are
necessary?

– Key questions

• Where can the send window be?

• What frame can be received next?

CS/ECE 438 © UIUC - Spring 2009 34

Sliding Window Sequence
Numbers

• Assume SWS = RWS (simplest, and typical)
• Sender transmits full SWS
• Two extreme cases:

– None received (waiting for 0...SWS - 1)
– All received (waiting for SWS...2 SWS - 1)

• All possible packets must have unique sequence
numbers

Send WindowSend WindowSend WindowSend Window

Receive Window
NFE

Send Window

1 2 3 4 5 6 7 8 9 10 11 12

CS/ECE 438 © UIUC - Spring 2009 35

Sliding Window Sequence
Numbers

• Extreme Locations for SWS
• Requirements

– If a received packet is not in the receive window with no
wrap, then it must not be in the receive window with wrap!

• Correctness condition:
– Number of Sequence Numbers ≥ SWS + RWS
– Alternates between two halves of the sequence number

space

Send Window Send Window

Receive Window
NFE

1 2 3 4 5 6 7 8 9 10 11 12

CS/ECE 438 © UIUC - Spring 2009 36

Sliding Window Sequence
Numbers

• Example
– If SWS = RWS = 8

– At least 16 sequence numbers are needed

– A 4-bit sequence number space is enough

• Warning
– P&D sometimes uses the variable Max_Seq_Num for the

number of sequence numbers and sometimes for the
maximum sequence number (these differ by one!)

– Use Num_Seq_Num for the number of sequence numbers:
0, 1, …, Num_Seq_Num – 1

CS/ECE 438 © UIUC - Spring 2009 37

Window Sizes

• How big should we make SWS?

– Compute from delay x bandwidth

• How big should we make RWS?

– Depends on buffer capacity of receiver

CS/ECE 438 © UIUC - Spring 2009 38

Sliding Window Protocol Code
Example

• Parameters

– send/receive window size (SWS/RWS)

– last acknowledgement received (LAR)

– last frame sent (LFS)

– next frame expected (NFE)

– last frame acceptable (LFA)

CS/ECE 438 © UIUC - Spring 2009 39

Sliding Window Protocol Code
Example

• Constants

– Receive window size (RWS)

– Maximum sequence number
(MAX_SEQ_NO)

– Frame size (FRAME_SIZE, constant for
simplicity)

CS/ECE 438 © UIUC - Spring 2009 40

Sliding Window Protocol Code
Example

• Data structures

– Next frame expected (an integer)

– One frame buffer for each entry in receive
window

– One presence bit for each entry

• Receive window cycles through

– Sequence numbers

– Data structures (thus RWS must divide
MAX_SEQ_NO)

CS/ECE 438 © UIUC - Spring 2009 41

Sliding Window Protocol Code
Example

#define RWS 8 /* receive window size */
#define MAX_SEQ_NO 16 /* max. sequence number+1 */

/* (must be multiple of */
/* RWS for this code) */

#define FRAME_SIZE 1000 /* constant for simplicity*/

char buf[RWS][FRAME_SIZE]; /* RWS frame buffers */
int present[RWS]; /* are frame buffers full?*/

/* (initialized to 0’s) */
int NFE = 0; /* next frame expected */
extern void send_ack (int seq_no) ;
extern void pass_to_app (char* data) ;
void recv_frame (char* data, int seq_no) ;

CS/ECE 438 © UIUC - Spring 2009 42

Sliding Window Protocol Code
Example

void recv_frame (char* data, int seq_no)
{

int idx; /* index into data structures */
int i; /* loop index */

/* Map sequence numbers NFE...predecessor (NFE)
into 0...MAX_SEQ_NO - 1, then see if seq_no
falls within the receive window. */

if (((seq_no + (MAX_SEQ_NO - NFE)) % MAX_SEQ_NO)
< RWS) {

/* Frames outside the window */
/* are ignored. (but an ACK */
/* is sent; why?) */

CS/ECE 438 © UIUC - Spring 2009 43

Sliding Window Protocol Code
Example

/* Calculate index into data structures. */
idx = (seq_no % RWS);

if (!present[idx]) {/* frame is not dup */
present[idx] = 1;/* mark received */
memcpy (buf[idx], data, FRAME_SIZE);

/* copy data into buf */

CS/ECE 438 © UIUC - Spring 2009 44

Sliding Window Protocol Code
Example

/* Got a new frame; pass frames up to host? */
for (i = 0; i < RWS; i++) {

idx = (i + NFE) % RWS; /* Re-use idx.*/
/* first missing frame becomes NFE */
/* after this loop terminates */
if (!present[idx]) break;

/* Frame is present—send it up! */
pass_to_app (buf[idx]);
present[idx] = 0; /* Mark buffer empty. */

}
/* Advance NFE to first missing frame. */
NFE = (NFE + i) % MAX_SEQ_NO;

}

CS/ECE 438 © UIUC - Spring 2009 45

Sliding Window Protocol Code
Example

/* Frame handled (might have */
/* been duplicate). */

} /* (Send ACK for any frame received */

/* Now send acknowledgement for */
/* predecessor (NFE). */
send_ack ((NFE + MAX_SEQ_NO - 1) % MAX_SEQ_NO);

}

CS/ECE 438 © UIUC - Spring 2009 46

Correctness

• Claim
– A sliding window protocol leads to in-order

delivery of all frames

• Assumptions
– All sequence numbers are different
– Frames can be lost
– Frames can be delayed an arbitrarily finite

amount of time
– Frames are not reordered on the line
– Frames can arrive with detectable errors

• Are these assumptions adequate?

CS/ECE 438 © UIUC - Spring 2009 47

Sliding Window Protocol
Correctness

• Need one more assumption

– Any given frame is received without errors after a
finite number of retransmissions

• Proof in two steps

– Establish correctness assuming infinite sequence
number space

– Show that finite sequence number space does
not affect result as long as it has
>= 2 max (SWS, RWS) possible numbers

CS/ECE 438 © UIUC - Spring 2009 48

Sliding Window Protocol
Correctness

• Step 1: establish correctness assuming
infinite sequence number space
– Use induction on k with invariant

“the kth frame is eventually received”

• Step 2: show that finite sequence number
space does not affect result as long as it has
>= 2 max (SWS, RWS) possible numbers

RWS = 6

NFE = 4 LFA = 9 What frame can arrive next?

2 3 5 7 10 11 12 13

Time

4 6 8 9

CS/ECE 438 © UIUC - Spring 2009 49

ARQ Algorithm Classification

• Three Types:

– Stop-and-Wait: SWS = 1 RWS = 1

– Go-Back-N: SWS = N RWS = 1

– Selective Repeat: SWS = N RWS = M

• Usually M = N

Selective Repeat

Go-Back-N
Stop-And-Wait

CS/ECE 438 © UIUC - Spring 2009 50

Sliding Window Variations: Go-
Back-N

• SWS = N, RWS = 1

• Receiver only buffers one frame

• If a frame is lost, the sender may need to
retransmit up to N frames
– i.e., sender “goes back” N frames

• Design questions
– How long should we set the frame timeout?

– Does receiver send NACK for out-of-sequence
frame?

CS/ECE 438 © UIUC - Spring 2009 51

Go-Back-N: Cumulative ACKs

P
acket 0

A

B

P
acket 1

A
C

K
 0

P
acket 3

P
acket 4

P
acket 2

P
acket 3

Packets 2,3,4,5
are

retransmitted

A
C

K
 1

P
acket 2

loss
P

acket 5

P
acket 4

A
C

K
 1

A
C

K
 1

A
C

K
 1

Timeout for Packet 2

A
C

K
 3

A
C

K
 4

A
C

K
 5

P
acket 5

A
C

K
 6

CS/ECE 438 © UIUC - Spring 2009 52

Sliding Window Variations:
Selective Repeat

• SWS = N, RWS = M

• Receiver buffer M frames

• If a frame is lost, sender must only resend
– Frames lost within the receive window

• Variations
– How long is the frame timeout?

– Use cumulative or per-frame ACK?

– Does protocol adapt timeouts?

– Does protocol adapt SWS and/or RWS?

CS/ECE 438 © UIUC - Spring 2009 53

Selective Repeat

P
acket 0

A

B

P
acket 1

A
C

K
 0

P
acket 3

P
acket 7

P
acket 2

P
acket 6

Packet 2 is
retransmitted

A
C

K
 1

P
acket 2

loss
P

acket 5

P
acket 4

A
C

K
 3

A
C

K
 4

A
C

K
 5

A
C

K
 2

A
C

K
 6

A
C

K
 7

P
acket 8

A
C

K
 8

CS/ECE 438 © UIUC - Spring 2009 54

Roles of a Sliding Window
Protocol

• Reliable delivery on an unreliable link
– Core function

• Preserve delivery order
– Controlled by the receiver

• Flow control
– Allow receiver to throttle sender

• Separation of Concerns
– Must be able to distinguish between different functions that

are sometimes rolled into one mechanism

CS/ECE 438 © UIUC - Spring 2009 55

Forward Error Correction (FEC)

• Alternative to ARQ algorithms

• Idea

– Error correction instead of error detection

– Send extra information to avoid retransmission
(i.e., fix errors first/forward rather than
afterward/backward)

• Why

– Very high latency connections

– Difficult for retransmission

CS/ECE 438 © UIUC - Spring 2009 56

Overview

• Covered
– Elements of a network

• Nodes and links

– Building a reliable abstraction on a point-to-point link
• Simulating an error free channel

• Detecting transmission errors

• Defining units of communication data

• Physical transmission methods and challenges

• Factors limiting data rate

• Next
– Dealing with shared media

– The software/hardware interface for communication

CS/ECE 438 © UIUC - Spring 2009 57

Multiple Access Media

• Multiple senders on some media

– Buses (Ethernet)

– Radio, Satellite

– Token Ring

• Need methods to mediate access

– Fair arbitration

– Good performance

