
Lecture 2:
Sockets Programming

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

January 22, 2010

Network Programming with
Sockets

• Sockets API:

– An interface to the transport layer

• Introduced in 1981 by BSD 4.1

• Implemented as library and/or system calls

• Similar interfaces to TCP and UDP

• Can also serve as interface to IP (for super-
user); known as “raw sockets”

Network Programming

• How should two hosts communicate with
each other over the Internet?

• The “Internet Protocol” (IP)

• Transport protocols: TCP, UDP

• How should programmers interact with the
protocols?

• Sockets API – application programming interface

• De facto standard for network programming

How can many hosts
communicate?

• Multiplex traffic with routers

• Question: How to identify the destination?

• Question: How to share bandwidth across different flows?

Identifying hosts with
Addresses and Names

• IP addresses
– Easily handled by routers/computers
– Fixed length
– E.g.: 128.121.146.100

• But how do you know the IP address?

• Internet domain names
– Human readable, variable length
– E.g.: twitter.com

• But how do you get the IP address from the domain name?
– Domain Name System (DNS) maps between them

How can many hosts share
network resources?

• Solution: divide traffic into “IP packets”

– At each router, the entire packet is received, stored, and then
forwarded to the next router

– Use packet “headers” to denote which connection the packet
belongs to

• Contains src/dst address/port, length, checksum, time-to-live, protocol,
flags, type-of-service, etc

File 1

File 2

File 3
dataheader

Is IP enough?

• What if host runs multiple applications? Or if contents
get corrupted?

• Solution: User Datagram Protocol (UDP)
– 16-bit “Port numbers” in header distinguishes traffic from

different applications

– “Checksum” covering data, UDP header, and IP header
detects flipped bits

– Unit of Transfer is “datagram” (a variable length packet)

– Properties:
• Unreliable (no guaranteed delivery)

• Unordered (no guarantee of maintained order of delivery)

• Unlimited Transmission (no flow control)

Is UDP enough?

• What if network gets congested? Or packets get
lost/reordered/duplicated?

• Solution: Transport Control Protocol (TCP)
– Uses “sequence numbers” and guarantees reliability,

ordering, and integrity
– Backs off when there is congestion
– Connection-oriented (Set up connection before

communicating, Tear down connection when done)
– Gives ‘byte-stream” abstraction to application
– Also has ports, but different namespace from UDP

• Which one is better, TCP or UDP?
• Why not other hybrid design points?

TCP Service

• Reliable Data Transfer
– Guarantees delivery of all data
– Exactly once if no catastrophic failures

• Sequenced Data Transfer
– Guarantees in-order delivery of data
– If A sends M1 followed by M2 to B, B never receives M2

before M1

• Regulated Data Flow
– Monitors network and adjusts transmission appropriately
– Prevents senders from wasting bandwidth
– Reduces global congestion problems

• Data Transmission
– Full-Duplex byte stream

Internet Protocols

ModemATMFDDIEthernet

IPNetwork

TCP UDP

Skype
(VOIP)Application

Layers

Physical

Data Link

Transport

IPTV
(streaming

media)

HTTP
(Web)

BitTorrent
(P2P)

Next question: How should people
program networked apps?

• How can we compose together
programs running on different
machines?
– Client-server model

• What sort of interfaces should we
reveal to the programmer?
– Sockets API

Client-Server Model

• A client initiates a request to a well-known server
• Example: the web

• Other examples: FTP, SSH/Telnet, SMTP (email),
Print servers, File servers

Client Web server

“GET index.html”
(request for web page)

“HTTP/1.0 200 OK…”
(response, including web page)

Client-Server Model

• Asymmetric Communication
– Client sends requests

– Server sends replies

• Server/Daemon
– Well-known name and port

– Waits for contact

– Processes requests, sends replies

• Client
– Initiates contact

– Waits for response

• Can you think of any network
apps that are not client/server?

Client

Server

Client

Client

Client

Server-side service models

• Concurrent:
– Server processes multiple clients’ requests

simultaneously

• Sequential:
– Server processes only one client’s requests at a

time

• Hybrid:
– Server maintains multiple connections, but

processes responses sequentially

• Which one is best?

Wanna See Real Clients and Servers?

• Apache Web server
– Open source server first released in 1995

– Name derives from “a patchy server” ;-)

– Software available online at http://www.apache.org

• Mozilla Web browser
– http://www.mozilla.org/developer/

• Sendmail
– http://www.sendmail.org/

• BIND Domain Name System
– Client resolver and DNS server

– http://www.isc.org/index.pl?/sw/bind/

• …

What interfaces to expose to
programmer?

• Stream vs. Datagram sockets

• Stream sockets
– Abstraction: send a long stream of

characters

– Typically implemented on top of TCP

• Datagram sockets
– Abstraction: send a single packet

– Typically implemented on top of UDP

Stream sockets

send (“This is a long
sequence of text I would like
to send to the other host”)

Sockets API

“This is a long”

Sockets API

“sequence of text”
“I would like to send”

“to the other host”

“This is a long sequence of
text I would like to send to
the other host”=recv (socket)

Datagram sockets

sendto (“This is a long”)
sendto (“sequence of text”)
sendto (“I would like to send”)
sendto (“to the other host”)

Sockets API

“This is a long”

Sockets API

“sequence of text”
“I would like to send”

“to the other host”

“This is a long”=recvfrom (socket)
“sequence of text”=recvfrom (socket)
“I would like to send”=recvfrom (socket)
“to the other host”=recvfrom (socket)

What specific functions to
expose?

• Data structures to store information about
connections and hosts

• Functions to create and bind “socket
descriptors”

• Functions to establish and teardown
connections

• Functions to send and receive data over
connections

Example: TCP streaming client

1. Client specifies an IP address and port it wants to
connect to.

2. The sockets library takes care of the connection
setup details, and returns back a unique integer (a
“socket”).

3. When the application wants to send data, it specifies
the socket number, and a pointer to the data it
wants to send.

4. The library looks up in a table the IP/port
information corresponding to that socket number,
constructs a packet, puts that IP/port in the header,
and sends the packet.

TCP Connection Setup

Synchronize (SYN) J

SYN K,

acknowledge (ACK) J+1

ACK K+1

client server

socket
socket

connect
bind

listen

accept

connect completes

connection added to
incomplete queue

connection moved
to complete queue

TCP Connection Example

socket
socket

connect
bind

listen

acceptwrite

read
write

read

close
close

client server

UDP Connection Example

client server

socket
socket

sendto
bind

recvfrom

sendto

recvfrom

close

Example 1: Streaming Client
int main (int argc, char* argv[]){

int sockfd , numbytes;

char buf[MAXDATASIZE + 1];

struct hostent* he;

struct sockaddr_in their_addr;

/* connector ’s address information */

if (argc != 2) {

fprintf (stderr, “usage: client hostname\n ”);

exit (1);

}

if ((he = gethostbyname (argv[1])) == NULL) {

/* get the host info */

perror (“gethostbyname ”);

exit (1);

}

if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) == -1) {

perror (“socket ”);

exit (1);

}

their_addr.sin_family = AF_INET; /* interp ’d by host */

their_addr.sin_port = htons (PORT);

their_addr.sin_addr = *((struct in_addr*)he->h_addr);

bzero (&(their_addr.sin_zero), 8);

Socket descriptor (used to
identify connections)

Gets IP address and other
info for specified hostname

via DNS lookup

Returns an available socket
descriptor

Specifies identity of server
we will connect to

Information about a host (domain
name, list of addresses associated
with machine, type of address, etc

Example 1: Streaming Clientif (connect (sockfd, (struct sockaddr*)&their_addr,

sizeof (struct sockaddr)) == -1) {

perror (“connect ”);

exit (1);

}

if ((numbytes = recv (sockfd, buf, MAXDATASIZE, 0))

== -1) {

perror (“recv ”);

exit (1);

}

buf[numbytes] = ‘\0 ’;

printf (“Received: %s ”, buf);

close (sockfd);

return 0;

}

Receive data from server,
put it into buf

Tell OS we are done with this socket,
Which will clean up state and tear

down the connection

Returns an available socket
descriptor

server
// SERVER CODE
main()
{

int sockfd, new_fd;
struct sockaddr_in my_addr; /* my address */
struct sockaddr_in their_addr; /* connector addr */
int sin_size;

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0))==-1){
perror("socket");
exit(1);

}
my_addr.sin_family = AF_INET; /* host byte order */
my_addr.sin_port = htons(MYPORT); /* short, network

byte order */
my_addr.sin_addr.s_addr = htonl(INADDR_ANY);
/* automatically fill with my IP */
bzero(&(my_addr.sin_zero), 8); /* zero struct */

if (bind(sockfd, (struct sockaddr *)&my_addr,
sizeof(struct sockaddr)) == -1) {

perror("bind");
exit(1);

}

Socket descriptors (used to
identify connections)

Returns an available socket
descriptor

Specifies identity of server’s
end of the connection

Associates that identity
to the socket

server

// SERVER CODE (continued)

if (listen(sockfd, BACKLOG) == -1) {
perror("listen");
exit(1);

}
while(1) { /* main accept() loop */

sin_size = sizeof(struct sockaddr_in);
if ((new_fd = accept(sockfd, (struct sockaddr*)

&their_addr,&sin_size)) == -1) {
perror("accept");
continue;

}
printf("server: got connection from %s\n",
inet_ntoa(their_addr.sin_addr));
if (!fork()) { /* this is the child process */

if (send(new_fd,"Hello, world!\n", 14, 0)
== -1)

perror("send");
close(new_fd);
exit(0);

}
close(new_fd); /* parent doesn't need this */
/* clean up all child processes */
while(waitpid(-1,NULL,WNOHANG) > 0);

}
}

Associate “new_fd” with the next client
that connects (block until one does)

Send “hello world” to the
client connected to new_fd

Tell OS we are done with this socket, which
will clean up state and tear down the connection

Tell OS that we are we are willing
To accept connections on this socket

Sockets API details

• Data structures to store/convert information about
hosts/connections
– inet_ntoa, inet_aton, gethostbyname,

• Functions to create and bind socket descriptors
– socket, bind, listen

• Functions to establish and teardown connections
– connect, accept, close, shutdown

• Functions to send and receive data
– send, sendto, write, recv, recvfrom, read

One tricky issue…

• Different processor architectures store data in
different “byte orderings”
– What is 200 in binary? 1100 1001? Or 1001 1100?

• Big Endian vs. Little Endian
– Little Endian (Intel, DEC):

• Least significant byte of word is stored in the lowest memory address

– Big Endian (Sun, SGI, HP, PowerPC):
• Most significant byte of word is stored in the lowest memory address

– Host Byte Order can be Big or Little Endian
– Network Byte Order = Big Endian

• Allows both sides to communicate
• Must be used for some data (i.e. IP Addresses)

Converting byte orderings

Solution: use byte ordering functions to convert. E.g.:

int m, n;
short int s,t;

m = ntohl (n) net-to-host long (32-bit) translation
s = ntohs (t) net-to-host short (16-bit) translation
n = htonl (m) host-to-net long (32-bit) translation
t = htons (s) host-to-net short (16-bit) translation

Why Can’t Sockets Hide These
Details?

• Dealing with endian differences is tedious

– Couldn’t the socket implementation deal with this

– … by swapping the bytes as needed?

• No, swapping depends on the data type

– Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)

– Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs. (byte
0, byte 1, byte 2, byte 3)

– String of one-byte charters: (char 0, char 1, char 2, …) in
both cases

• Socket layer doesn’t know the data types

– Sees the data as simply a buffer pointer and a length

– Doesn’t have enough information to do the swapping

How to handle concurrency?

• Process requests serially
– Slow – what if you’re processing another request? What if

you’re blocked on accept()?

• Multiple threads/processes (e.g. Apache web server)
– Each thread handles one request
– fork(), pthreads

• Synchronous I/O (e.g. Squid web proxy cache)
– Maintain a “set” of file descriptors, whenever one has an

“event”, process it and put it back onto the set
– select(), poll()

Select

int select (int num_fds, fd_set* read_set, fd_set*
write_set, fd_set* except_set, struct timeval*
timeout);

• Wait for readable/writable file descriptors.

• Return:
– Number of descriptors ready

– -1 on error, sets errno

• Parameters:
– num_fds :

• number of file descriptors to check, numbered from 0

– read_set , write_set , except_set :

• Sets (bit vectors) of file descriptors to check for the specific condition

– timeout :

• Time to wait for a descriptor to become ready

File Descriptor Sets

int select (int num_fds, fd_set* read_set,
fd_set* write_set, fd_set* except_set, struct
timeval* timeout);

• Bit vectors
– Only first num_fds checked

– Macros to create and check sets

fds_set myset;
void FD_ZERO (&myset); /* clear all bits */
void FD_SET (n, &myset); /* set bits n to 1 */
void FD_CLEAR (n, &myset); /* clear bit n */
int FD_ISSET (n, &myset); /* is bit n set? */

File Descriptor Sets

• Three conditions to check for

– Readable:

• Data available for reading

– Writable:

• Buffer space available for writing

– Exception:

• Out-of-band data available (TCP)

Timeout

• Structure

struct timeval {

long tv_sec ; /* seconds */

long tv_usec ;/* microseconds */

};

Select

• High-resolution sleep function
– All descriptor sets NULL

– Positive timeout

• Wait until descriptor(s) become ready
– At least one descriptor in set

– timeout NULL

• Wait until descriptor(s) become ready or timeout occurs
– At least one descriptor in set

– Positive timeout

• Check descriptors immediately (poll)
– At least one descriptor in set

– 0 timeout

Select: Example

fd_set my_read;

FD_ZERO(&my_read);

FD_SET(0, &my_read);

if (select(1, &my_read, NULL, NULL) == 1) {
ASSERT(FD_ISSET(0, &my_read);

/* data ready on stdin */

}

• Question: which is better, pthreads or select?

Advanced Sockets

int yes = 1;

setsockopt (fd, SOL_SOCKET, SO_REUSEADDR,
(char *) &yes, sizeof (yes));

– Call just before bind

– Allows bind to succeed despite the existence of
existing connections in the requested TCP port

– Connections in limbo (e.g. lost final ACK) will
cause bind to fail

Concurrent programming with
Posix Threads (pthreads)

• When coding

– Include <pthread.h> first in all source

files

• When compiling

– Use compiler flag –D_REENTRANT

• When linking

– Link library -lpthread

server

// PTHREADS EXAMPLE

void main(int argc, char* argv[]) {
int n,i;
pthread_t *threads;
pthread_attr_t pthread_custom_attr;
parm *p;

if (argc != 2)
{

printf ("Usage: %s n\n where n is no. of threads\n",a rgv[0]);
exit(1);

}

n=atoi(argv[1]);

if ((n < 1) || (n > MAX_THREAD))
{

printf ("The no of thread should between 1 and
%d.\n",MAX_THREAD);

exit(1);
}

threads=(pthread_t *)malloc(n*sizeof(*threads));
pthread_attr_init(&pthread_custom_attr);

p=(parm *)malloc(sizeof(parm)*n);

Contains thread information, acts
as handle for thread

Specifies “attributes” for thread, like
Scheduling policy/priority and

stack size

Initializes attributes to
default values (NULL)

server
/* Start up threads */
for (i=0; i<n; i++)
{

p[i].id=i;
pthread_create(&threads[i], &pthread_custom_attr, h ello,

(void *)(p+i));
}

/* Synchronize the completion of each thread. */

for (i=0; i<n; i++)
{

pthread_join(threads[i],NULL);
}
free(p);

}

void *hello(void *arg)
{

parm *p=(parm *)arg;
printf("Hello from node %d\n", p->id);
return (NULL);

}

Wait on termination
of thread threads[i]

Creates a pthread, assigns it attributes,
triggers it to run function pointer

Thread function (passed in
during pthread_create)

pthread Creation

int pthread_create (pthread_t* tid, pthread_attr_t*
attr, void*(child_main), void* arg);

• Spawn a new posix thread

• Parameters:
– tid :

• Unique thread identifier returned from call

– attr :

• Attributes structure used to define new thread

• Use NULL for default values

– child_main :

• Main routine for child thread

• Takes a pointer (void*) , returns a pointer (void*)

– arg :

• Argument passed to child thread

Sockets API details

• Data structures to store/convert information about
hosts/connections
– inet_ntoa, inet_aton, gethostbyname,

• Functions to create and bind socket descriptors
– socket, bind, listen

• Functions to establish and teardown connections
– connect, accept, close, shutdown

• Functions to send and receive data
– send, sendto, write, recv, recvfrom, read

Socket Address Structure

• IP address:
struct in_addr {

in_addr_t s_addr ; /* 32-bit IP address */
};

• TCP or UDP address+port:
struct sockaddr_in {

short sin_family ; /* e.g., AF_INET */
ushort sin_port ; /* TCP/UDP port */
struct in_addr ; /* IP address */

};

• all but sin_family in network byte order

Address Access/Conversion
Functions

• All binary values are network byte ordered

struct hostent* gethostbyname (const char*
hostname);
– Translate DNS host name to IP address (uses DNS)

struct hostent* gethostbyaddr (const char*
addr, size_t len, int family);
– Translate IP address to DNS host name (not secure)

char* inet_ntoa (struct in_addr inaddr);
– Translate IP address to ASCII dotted-decimal notation (e.g.,

“128.32.36.37”); not thread-safe

Address Access/Conversion
Functions

in_addr_t inet_addr (const char* strptr);
– Translate dotted-decimal notation to IP address; returns -1 on

failure, thus cannot handle broadcast value “255.255.255.255”

int inet_aton (const char* strptr, struct
in_addr inaddr);
– Translate dotted-decimal notation to IP address; returns 1 on

success, 0 on failure

int gethostname (char* name, size_t
namelen);
– Read host’s name (use with gethostbyname to find local IP)

Socket Creation and Setup

• Include file <sys/socket.h>

• Create a socket
– int socket (int family, int type, int protocol);

– Returns file descriptor or -1.

• Bind a socket to a local IP address and port number
– int bind (int sockfd, struct sockaddr* myaddr, int

addrlen);

• Put socket into passive state (wait for connections
rather than initiate a connection).
– int listen (int sockfd, int backlog);

Functions: socket

int socket (int family, int type, int
protocol);

• Create a socket.
– Returns file descriptor or -1. Also sets errno on failure.
– family : address family (namespace)

• AF_INET for IPv4
• other possibilities: AF_INET6 (IPv6), AF_UNIX or AF_LOCAL

(Unix socket), AF_ROUTE(routing)

– type : style of communication
• SOCK_STREAMfor TCP (with AF_INET)
• SOCK_DGRAMfor UDP (with AF_INET)

– protocol : protocol within family
• typically 0

Function: bind

int bind (int sockfd, struct sockaddr*
myaddr, int addrlen);

• Bind a socket to a local IP address and port number
– Returns 0 on success, -1 and sets errno on failure

– sockfd : socket file descriptor (returned from socket)

– myaddr : includes IP address and port number

• IP address: set by kernel if value passed is INADDR_ANY, else
set by caller

• port number: set by kernel if value passed is 0, else set by
caller

– addrlen : length of address structure
• = sizeof (struct sockaddr_in)

TCP and UDP Ports

• Allocated and assigned by the Internet Assigned
Numbers Authority
– see RFC 1700 or
ftp://ftp.isi.edu/in-notes/iana/assignments/port-nu mbers

• private/ephemeral ports49152-65535

• registered services/ephemeral ports1024-49151

• registered and controlled, also used for identity
verification

• super-user only

513-1023

• standard services (see /etc/services)

• super-user only
1-512

Reserved Ports

Keyword Decimal Description
------- ------- -----------

0/tcp Reserved
0/udp Reserved

tcpmux 1/tcp TCP Port Service
tcpmux 1/udp TCP Port Service
echo 7/tcp Echo
echo 7/udp Echo
systat 11/tcp Active Users
systat 11/udp Active Users
daytime 13/tcp Daytime (RFC 867)
daytime 13/udp Daytime (RFC 867)
qotd 17/tcp Quote of the Day
qotd 17/udp Quote of the Day
chargen 19/tcp Character Generator
chargen 19/udp Character Generator
ftp-data 20/tcp File Transfer Data
ftp-data 20/udp File Transfer Data
ftp 21/tcp File Transfer Ctl
ftp 21/udp File Transfer Ctl
ssh 22/tcp SSH Remote Login
ssh 22/udp SSH Remote Login
telnet 23/tcp Telnet
telnet 23/udp Telnet
smtp 25/tcp Simple Mail Transfer
smtp 25/udp Simple Mail Transfer

Keyword Decimal Description
------- ------- -----------
time 37/tcp Time
time 37/udp Time
name 42/tcp Host Name Server
name 42/udp Host Name Server
nameserver 42/tcp Host Name Server
nameserver 42/udp Host Name Server
nicname 43/tcp Who Is
nicname 43/udp Who Is
domain 53/tcp Domain Name Server
domain 53/udp Domain Name Server
whois++ 63/tcp whois++
whois++ 63/udp whois++
gopher 70/tcp Gopher
gopher 70/udp Gopher
finger 79/tcp Finger
finger 79/udp Finger
http 80/tcp World Wide Web HTTP
http 80/udp World Wide Web HTTP
www 80/tcp World Wide Web HTTP
www 80/udp World Wide Web HTTP
www-http 80/tcp World Wide Web HTTP
www-http 80/udp World Wide Web HTTP
kerberos 88/tcp Kerberos
kerberos 88/udp Kerberos

Functions: listen

int listen (int sockfd, int backlog);

• Put socket into passive state (wait for connections
rather than initiate a connection)
– Returns 0 on success, -1 and sets errno on failure

– sockfd : socket file descriptor (returned from socket)

– backlog : bound on length of unaccepted connection queue

(connection backlog); kernel will cap, thus better to set high

Establishing a Connection

• Include file <sys/socket.h>

int connect (int sockfd, struct sockaddr*
servaddr, int addrlen);

– Connect to another socket.

int accept (int sockfd, struct sockaddr*
cliaddr, int* addrlen);

– Accept a new connection. Returns file descriptor
or -1.

Functions: connect

int connect (int sockfd, struct sockaddr*
servaddr, int addrlen);

• Connect to another socket.
– Returns 0 on success, -1 and sets errno on failure

– sockfd : socket file descriptor (returned from socket)

– servaddr : IP address and port number of server

– addrlen : length of address structure

• = sizeof (struct sockaddr_in)

• Can use with UDP to restrict incoming datagrams and
to obtain asynchronous errors

Functions: accept

int accept (int sockfd, struct sockaddr* cliaddr,
int* addrlen);

• Accept a new connection
– Returns file descriptor or -1 and sets errno on failure

– sockfd : socket file descriptor (returned from socket)

– cliaddr : IP address and port number of client (returned from
call)

– addrlen : length of address structure = pointer to int set to
sizeof (struct sockaddr_in)

• addrlen is a value-result argument

– the caller passes the size of the address structure, the kernel
returns the size of the client’s address (the number of bytes
written)

Sending and Receiving Data

int write (int sockfd, char* buf, size_t
nbytes);

– Write data to a stream (TCP) or “connected”
datagram (UDP) socket.

• Returns number of bytes written or -1.

int read (int sockfd, char* buf, size_t
nbytes);

– Read data from a stream (TCP) or “connected”
datagram (UDP) socket.

• Returns number of bytes read or -1.

Sending and Receiving Data

int sendto (int sockfd, char* buf, size_t
nbytes, int flags, struct sockaddr*
destaddr, int addrlen);

– Send a datagram to another UDP socket.
• Returns number of bytes written or -1.

int recvfrom (int sockfd, char* buf,
size_t nbytes, int flags, struct
sockaddr* srcaddr, int* addrlen);

– Read a datagram from a UDP socket.
• Returns number of bytes read or -1.

Functions: write

int write (int sockfd, char* buf, size_t
nbytes);

• Write data to a stream (TCP) or “connected”
datagram (UDP) socket
– Returns number of bytes written or -1 and sets errno on

failure
– sockfd : socket file descriptor (returned from socket)
– buf : data buffer
– nbytes : number of bytes to try to write

• Some reasons for failure or partial writes
• process received interrupt or signal
• kernel resources unavailable (e.g., buffers)

Functions: read

int read (int sockfd, char* buf, size_t
nbytes);

• Read data from a stream (TCP) or “connected”
datagram (UDP) socket
– Returns number of bytes read or -1 and sets errno on

failure

– Returns 0 if socket closed

– sockfd : socket file descriptor (returned from socket)

– buf : data buffer

– nbytes : number of bytes to try to read

Functions: sendto

int sendto (int sockfd, char* buf, size_t nbytes,
int flags, struct sockaddr* destaddr, int
addrlen);

• Send a datagram to another UDP socket
– Returns number of bytes written or -1 and sets errno on failure

– sockfd : socket file descriptor (returned from socket)

– buf : data buffer

– nbytes : number of bytes to try to read

– flags : see man page for details; typically use 0

– destaddr : IP address and port number of destination socket

– addrlen : length of address structure
• = sizeof (struct sockaddr_in)

Functions: recvfrom

int recvfrom (int sockfd, char* buf, size_t
nbytes, int flags, struct sockaddr* srcaddr,
int* addrlen);

• Read a datagram from a UDP socket.
– Returns number of bytes read (0 is valid) or -1 and sets errno on

failure
– sockfd : socket file descriptor (returned from socket)
– buf : data buffer
– nbytes : number of bytes to try to read
– flags : see man page for details; typically use 0
– srcaddr : IP address and port number of sending socket (returned

from call)
– addrlen : length of address structure = pointer to int set to

sizeof (struct sockaddr_in)

Tearing Down a Connection

int close (int sockfd);

– Close a socket.

• Returns 0 on success, -1 and sets errno on failure.

int shutdown (int sockfd, int howto);

– Force termination of communication across a socket in one
or both directions.

• Returns 0 on success, -1 and sets errno on failure.

Functions: close

int close (int sockfd);

• Close a socket
– Returns 0 on success, -1 and sets errno on failure

– sockfd : socket file descriptor (returned from socket)

• Closes communication on socket in both directions
– All data sent before close are delivered to other side

(although this aspect can be overridden)

• After close , sockfd is not valid for reading or

writing

Functions: shutdown

int shutdown (int sockfd, int howto);
• Force termination of communication across a socket in one or

both directions
– Returns 0 on success, -1 and sets errno on failure

– sockfd : socket file descriptor (returned from socket)

– howto :

• SHUT_RDto stop reading

• SHUT_WRto stop writing

• SHUT_RDWRto stop both

• shutdown overrides the usual rules regarding duplicated
sockets, in which TCP teardown does not occur until all copies
have closed the socket

Summary

• Transport protocols

– TCP, UDP

• Network programming

– Sockets API, pthreads

