
Lecture 1:
Course Overview

CS/ECE 438: Communication Networks

Prof. Matthew Caesar

January 20, 2010

Copyright notice

• Copyright 2010 by University of Illinois
• All rights reserved. Permission to reproduce
this and all ECE/CS 438 course materials in
whole or part for not-for-profit educational
purposes is hereby granted. This document
may not be reproduced for commercial
purposes without the express written consent
of the author.

• Includes content by Robin Kravets, Steve
Lumetta, Bruce Hajek, Nitin Vaidya, Larry
Peterson, Jennifer Rexford, Ion Stoica,
Brighten Godfrey, and others

CS/ECE 438 © University of Illinois - Spring 2010 3

Course Information

• Instructors:
– Prof. Matthew Caesar

3118 SC
217-244-0527
caesar@cs.illinois.edu

• TAs:
– Brian Cho, Virajith Jalaparti

• Class Webpage:
– http://www.cs.illinois.edu/class/sp10/cs438

• Class News group:
– cs.illinois.class.cs438

Prerequisites

• Operating Systems Concepts

– CS 241 or equivalent

• C or C++ Programming

– Preferably Unix

• Probability and Statistics

CS/ECE 438 © University of Illinois - Spring 2010 4

Grading Policy

• Homework 15%

– 7 homework assignments

• Programming Projects 35%

– 3 Programming projects

• Mid-term Exam 20%

– March 17

• Final Exam 30%

– May 12, 7 – 10 PM

CS/ECE 438 © University of Illinois - Spring 2010 5

Homework and Projects

• Homework:

– Due Wednesdays at start of class.

– General extension to Fridays start of class (hard deadline).

• Solutions handed out in class on Fridays

– No questions to Professor, TAs or on newsgroup after class
on Wednesday.

• Projects:

– Due Fridays at 9:00pm.

– 2% off per hour late

– MP1 is solo

– MP2 and MP3 are 2 person teams

CS/ECE 438 © University of Illinois - Spring 2010 6

CS/ECE 438 © University of Illinois - Spring 2010 7

Academic Honesty

• Your work in this class must be your own.

• If students are found to have collaborated
excessively or to have blatantly cheated
(e.g., by copying or sharing answers during
an examination or sharing code for the
project), all involved will at a minimum
receive grades of 0 for the first infraction.
– We will run a similarity-checking system on code
and binaries

• Further infractions will result in failure in the
course and/or recommendation for dismissal
from the university.

CS/ECE 438 © University of Illinois - Spring 2010 8

Graduate Students

• Graduate students MAY take an extra one
hour project in conjunction with this class
– Graduate students

• Write a survey paper in a networking research area of
your choice

• Project proposal with list of 10+ academic references
(no URL’s) due February 11th

• Paper due last day of class

– Undergraduates may not take this project course
• However, if you are interested in networking research,

please contact me

Course Objectives

• At the end of the semester, you should be able to

– Identify the problems that arise in networked
communication

– Explain the advantages and disadvantages of existing
solutions to these problems in the context of different
networking regimes

– Understand the implications of a given solution for
performance in various networking regimes

– Evaluate novel approaches to these problems

CS/ECE 438 © University of Illinois - Spring 2010 9

Programming Objectives

• At the end of the semester, you should be able to

– Identify and describe the purpose of each component of
the TCP/IP protocol suite

– Develop solid client-server applications using TCP/IP

– Understand the impact of trends in network hardware on
network software issues

CS/ECE 438 © University of Illinois - Spring 2010 10

Course Contents

• Introduction to UNIX Network Programming

• Direct Link Networks

• Packet Switched Networks

• Internetworking

• End-to-End Protocols

• Congestion Control

• Performance Analysis and Queueing Theory

Some

• Mobile Ad hoc Networks

• P2P Networks

• Network Security

CS/ECE 438 © University of Illinois - Spring 2010 11

Why study networks?

• Internet has drastically changed the way we
interact with computers
– Business, collaborations, retail, news,
communications, gaming, media… all increasingly
conducted online

• Emergence of new distributed software to
support these applications
– Webmail, online retail, online auctions, wikis,
online storage, search, utility computing, network
management, messaging and email, wireless
services, social networking

What do these two things have in
common?

• First printing press

– Key idea:
movable type

• The Internet

Both lowered the cost of distributing information

The ARPANet

• 1962: J.C.R. Licklider appointed
head of ARPA
– Envisions shared network to connect

computers at different sites

• 1968: RFQ sent to 140 potential
bidders to build ARPANet
– 12 submissions (most regard proposal

as outlandish)

– BBN Technologies selected as winner

• 2 September 1969: UCLA first
node on ARPANet

• December 1969: 4 nodes
connected by phone lines

ARPANet evolves into Internet

ARPANet, 1971

ARPANet, 1980

Transition to NSFNet

Internet, today

Networking: Actually Not Boring

• How hard can it be?

• You just string a wire (or other signaling
path) between two computers…

• … first one pushes bits down the link…

• … and the second one gets them up… right?

• Where does it get tricky?

• What are the challenges?

Why Networking is Challenging

• Fundamental challenge: the speed of light

• Question: how long does it take light to travel
from UIUC to Mountain View, CA (Google
Headquarters)?

• Answer:

– Distance UIUC --> Mountain View is 2,935 km

– Traveling 300,000 km/s: 9.78ms

Fundamental Challenge: Speed of
Light

• Question: how long does it take an Internet “packet”
to travel from UIUC to Mountain View?

• Answer:
– For sure >= 9.78ms
– But also depends on:

• The route the packet takes (could be circuitous!)
• The propagation speed of the links the packet traverses

– E.g. in optical fiber light propagates only at 2/3 C

• The transmission rate (bandwidth) of the links (bits/sec)
– And also the size of the packet

• Number of hops traversed (“store and forward” delay)
• The “competition” for bandwidth the packet encounters
(congestion). It may have to wait in router queues.

– In practice this boils down to >=40ms
• With variance (can be hard to predict!)

Fundamental Challenge: Speed of
light

• Question: how many cycles does your PC
execute before it can possibly get a reply to a
message it sent to a Mountain View web
server?

• Answer:
– Round trip takes >= 80ms
– PC runs at (say) 3 GHz
– 3,000,000,000 cycles/sec * 0.08 sec =
240,000,000 cycles

• Thus,
– Communication feedback is always dated
– Communication fundamentally asynchronous

Fundamental Challenge: Speed of
Light

• Question: what about machines directly
connected (via a local area network or LAN)?

• Answer:
% ping www.cs.uiuc.edu

PING dcs-www.cs.uiuc.edu (128.174.252.83) 56(84) bytes of data.

64 bytes from 128.174.252.83: icmp_seq=1 ttl=63 time=0.263 ms

64 bytes from 128.174.252.83: icmp_seq=2 ttl=63 time=0.595 ms

64 bytes from 128.174.252.83: icmp_seq=3 ttl=63 time=0.588 ms

64 bytes from 128.174.252.83: icmp_seq=4 ttl=63 time=0.554 ms

...

• 500us = 1,500,000 cycles
– Still a loooooong time…

– … and asynchronous…

Why networking is challenging
(cont’d)

• Fundamental challenge: components fail

– Network communication involves a chain of
interfaces, links, routers, and switches…

Examples of Network Components

Why networking is challenging
(cont’d)

• Fundamental challenge: components fail
– Network communication involves a chain of interfaces, links,

routers, and switches…

– All of which must function correctly

• Question: suppose a communication involves 50
components which work correctly (independently)
99% of the time. What’s the likelihood the
communication fails at a given point in time?
– Answer: success requires that they all funciton, so failure

probability = 1 – 0.9950 = 39.5%

• So we have a lot of components, which tend to fail…
– … and we may not find out for a loooong time

Why networking is challenging
(cont’d)

• Challenge: enormous dynamic range
– Round trip times (latency) vary from 10 us’s to sec’s (105)

– Data rates (bandwidth) vary from kbps to 10 Gbps (107)

– Queuing delays inside the network vary from 0 to sec’s

– Packet loss varies from 0 to 90+%

– End system (host) capabilities vary from cell phones to
supercomputing clusters

– Application needs vary enormously: size of transfers,
bidirectionality, need for reliability, tolerance of jitter

• Related challenge: very often, there is no such thing
as “typical”. Beware of your “mental models”!
– Must think in terms of design ranges, not points

– Mechanisms need to be adaptive

Why networking is challenging
(cont’d)

• Challenge: different parties must work
together
– Multiple parties with different agendas must agree
how to divide the task between them

• Working together requires:
– Protocols (defining who does what)

• These generally need to be standardized

– Agreements regarding how different types of
activity are treated (policy)

• Different parties very well might try to
“game” the network’s mechanisms to their
advantage

Why networking is challenging
(cont’d)

• Challenge: incessant rapid growth
– Utility of the network scales with its size

• Fuels exponential growth (for more than 2 decades!)

– Data centers contain 100k+ of hosts, Internet contains
600M+ hosts, 2.6M routers
• Microsoft’s data center in Chicago: 500k servers

• Adds another dimension of dynamic range…
– and quite a number of ad hoc artifacts…

Why networking is challenging
(cont’d)

• Challenge: there are Bad Guys out there

• As the network population grows in size, so
does the number of
– Vandals

– Crazies

• What really matters, though: as network
population grows, it becomes more and more
attractive to
– Crooks

– (and also spies and militaries)

Why Crooks Matter for Networking

• They (and other attackers) seek ways to
misuse the network towards their gain
– Carefully crafted “bogus” traffic to manipulate the
network’s operation

– Torrents of traffic to overwhelm a service (denial-
of-service) for purposes of extortion/competition

– Passively recording network traffic in transit
(sniffing)

– Exploit flaws in clients and servers using the
network to trick into executing the attacker’s code
(compromise)

• They all do this energetically because there is
significant $$$ to be made

Why networking is challenging
(cont’d)

• Challenge: you cannot reboot the Internet!

– Everyone depends on the Internet

• Businesses

• Hospitals

• Education institutions

• Financial sector

• …

– Cannot stop, fix, or restart it

– … akin to changing the engine while you are flying
the plane!

Summary so far…

• Networking is about design in the
presence of challenges/contraints:
– Not akin to e.g., programming
languages/compilers
• Which have well-developed theories to draw
upon

– Much more akin to operating systems
• Abstractions

• Tradeoffs

• Design principles / “taste”

Roadmap for rest of lecture

• Today, let’s study a few key questions
that networks need to solve:

1. How can many hosts communicate?

2. How can we identify hosts?

3. How can we make protocols easy to
design/deploy?

Roadmap for rest of lecture

• Today, let’s study a few key questions
that networks need to solve:

1. How can many hosts communicate?

2. How can we identify hosts?

3. How can we make protocols easy to
design/deploy?

How can two hosts
communicate?

• Encode information on modulated “Carrier signal”

– Phase, frequency, and amplitude modulation, and
combinations thereof

– Ethernet: self-clocking Manchester coding ensures one
transition per clock

– Technologies: copper, optical, wireless

0.7 Volts

-0.7 Volts

How can many hosts
communicate?

• Naïve approach: full mesh

• Problem:

– Obviously doesn’t scale to the 570,937,778 hosts in the
Internet (estimated, Aug 2008)

How can many hosts
communicate?

• Multiplex traffic with routers

• Goals: make network robust to failures, maintain
spare capacity, reduce operational costs

CS/ECE 438 © University of Illinois - Spring 2010 40

Connectivity

• Building Block

– Links: coax cable, optical fiber, …

– Nodes: workstations, routers, …

• Links:

– Point-to-point

– Multiple access
…

Indirect Connectivity

• Switched Networks

• Internetworks

• Recursive definition of a
network

– Two or more nodes connected by
a physical link

– Two or more networks connected
by one or more nodes

CS/ECE 438 © University of Illinois - Spring 2010 41

CS/ECE 438 © University of Illinois - Spring 2010 42

Effects of Indirect Connectivity

• Nodes receive data on one link and forward it onto
the next ⇒ switching network
– Circuit Switching

• Telephone

• Stream-based (dedicated circuit)

• Links reserved for use by communication channel

• Send/receive bit stream at constant rate

– Packet Switching
• Internet

• Message-based (store-and-forward)

• Links used dynamically

• Admission policies and other traffic determine bandwidth

Roadmap for rest of lecture

• Today, let’s study a few key questions
that networks need to solve:

1. How can many hosts communicate?

2. How can we identify hosts?

3. How can we make protocols easy to
design/deploy?

How can we identify hosts?

• Hosts assigned topology-dependent addresses

• Routers advertise address blocks (“prefixes”)

• Routers compute “shortest” paths to prefixes

• Map IP addresses to names with DNS

Robert

twitter.com

23.2.0.0/24

81.2.0.0/24

11.1.0.0/16

4.0.0.0/8
Prefix HopsIF

Routing Table at B

D 1

4.0.0.0/8
Prefix HopsIF

Routing Table at C

D 1

4.0.0.0/8
Prefix HopsIF

Routing Table at A

B 2

A
B

C D
11.1.0.1

11.1.8.7

23.2.0.1

81.2.0.1 4.5.16.2

4.18.5.1

4.9.0.1

IP address

4.0.0.0/8

Prefix

Robert’s local
DNS server

Twitter’s authoritative
DNS server

.com authoritative
DNS sever

Addressing

• Addressing

– Unique byte-string used to indicate which node is the
target of communication

• Types of Addresses

– Unicast: node-specific

– Broadcast: all nodes on the network

– Multicast: subset of nodes on the network

• Routing

– The process of determining how to forward messages
toward the destination node based on its address

CS/ECE 438 © University of Illinois - Spring 2010 45

Naming: Domain Name System
(DNS)

• Properties of DNS

– Hierarchical name space divided into zones

– Translation of names to/from IP addresses

– Distributed over a collection of DNS servers

• Client application

– Extract server name (e.g., from the URL)

– Invoke system call to trigger DNS resolver code

• E.g., gethostbyname() on “www.cs.princeton.edu”

• Server application

– Extract client IP address from socket

– Optionally invoke system call to translate into name

• E.g., gethostbyaddr() on “12.34.158.5”

Domain Name System

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

12

34

56

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

12.34.56.0/24

DNS Resolver and Local DNS Server

Application

DNS resolver

Local DNS
server

1 10

DNS cache

DNS query

2

DNS response 9

Root server

3

4

Top-level
domain server

5

6

Second-level
domain server

7

8

Caching based on a time-to-live (TTL) assigned by the DNS server
responsible for the host name to reduce latency in DNS translation.

Roadmap for rest of lecture

• Today, let’s study a few key questions
that networks need to solve:

1. How can many hosts communicate?

2. How can we identify hosts?

3. How can we make protocols easy to
design/deploy?

Key Concepts in Networking

• Protocols
– Speaking the same language

– Syntax and semantics

• Layering
– Standing on the shoulders of giants

– A key to managing complexity

• Resource allocation
– Dividing scare resources among competing parties

– Memory, link bandwidth, wireless spectrum, paths, …

– Distributed vs. centralized algorithms

• Naming
– What to call computers, services, protocols, …

Protocols: Calendar Service

• Making an appointment with your advisor

• Specifying the messages that go back and
forth

– And an understanding of what each party is doing

Please meet with me for
1.5 hours starting at

1:30pm on February 8, 2006?

I can’t.
I can’t.

Yes!

Please meet with me for
1.5 hours starting at

3:00pm on February 8, 2006?

Please meet with me for
1.5 hours starting at

4:30pm on February 8, 2006?

Okay, So This is Getting Tedious

• You: When are you free to meet for 1.5
hours during the next two weeks?

• Advisor: 10:30am on Feb 8 and 1:15pm
on Feb 9.

• You: Book me for 1.5 hours at 10:30am
on Feb 8.

• Advisor: Yes.

Well, Not Quite Enough

• Student #1: When can you meet for 1.5 hours during
the next two weeks?

• Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
• Student #2: When can you meet for 1.5 hours during

the next two weeks?
• Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
• Student #1: Book me for 1.5 hours at 10:30am on

Feb 8.
• Advisor: Yes.
• Student #2: Book me for 1.5 hours at 10:30am on

Feb 8.
• Advisor: Uh… well… I can no longer can meet then.

I’m free at 1:15pm on Feb 9.
• Student #2: Book me for 1.5 hours at 1:15pm on Feb

9.
• Advisor: Yes.

Specifying the Details

• How to identify yourself?
– Name? Social security number?

• How to represent dates and time?
– Time, day, month, year? In what time zone?

– Number of seconds since Jan 1, 1970?

• What granularities of times to use?
– Any possible start time and meeting duration?

– Multiples of five minutes?

• How to represent the messages?
– Strings? Record with name, start time, and duration?

• What do you do if you don’t get a response?
– Ask again? Reply again?

Example: HyperText Transfer
Protocol

GET /courses/archive/spring08/cos461/ HTTP/1.1
Host: www.cs.princeton.edu
User-Agent: Mozilla/4.03
CRLF

HTTP/1.1 200 OK
Date: Mon, 4 Feb 2008 13:09:03 GMT
Server: Netscape-Enterprise/3.5.1
Last-Modified: Mon, 4 Feb 2008 11:12:23 GMT
Content-Length: 21
CRLF
Site under construction

Request

Response

Layering: A Modular Approach

• Sub-divide the problem

– Each layer relies on services from layer below

– Each layer exports services to layer above

• Interface between layers defines interaction

– Hides implementation details

– Layers can change without disturbing other layers

Link hardware

Host-to-host connectivity

Application-to-application channels

Application

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The waist facilitates interoperability

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

The Internet protocol suite

IP Suite: End Hosts vs. Routers

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

Layer Encapsulation

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

Problem: Packet size

Solution: Split the data across multiple
packets

What if the Data Doesn’t Fit?

• On Ethernet, max IP packet is 1500 bytes

• Typical Web page is 10 kbytes

GETindex.html

GET index.html

Protocol Demultiplexing

• Multiple choices at each layer

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

TCP/UDPIP

Port
Number

Network

Protocol
Field

Type
Field

Demultiplexing: Port Numbers

• Differentiate between multiple transfers

– Knowing source and destination host is not
enough

– Need an id for each transfer between the
hosts

• Specify a particular service running on a
host

– E.g., HTTP server running on port 80

– E.g., FTP server running on port 21

HTTP transfers

FTP transfer

Is Layering Harmful?

• Layer N may duplicate lower level functionality
– E.g., error recovery to retransmit lost data

• Layers may need same information
– E.g., timestamps, maximum transmission unit size

• Strict adherence to layering may hurt performance
– E.g., hiding details about what is really going on

• Some layers are not always cleanly separated
– Inter-layer dependencies for performance reasons

– Some dependencies in standards (header checksums)

• Headers start to get really big
– Sometimes more header bytes than actual content

Resource Allocation: Congestion Control

• What if too many folks are sending data?

– Senders agree to slow down their sending rates

– … in response to their packets getting dropped

• The essence of TCP congestion control

– Key to preventing congestion collapse of the
Internet

Transmission Control Protocol

• Flow control: window-based
– Sender limits number of outstanding bytes (window size)

– Receiver window ensures data does not overflow receiver

• Congestion control: adapting to packet losses
– Congestion window tries to avoid overloading the network

(increase with successful delivery, decrease with loss)

– TCP connection starts with small initial congestion window

timec
o
n
g
e
s
ti
o
n
 w
in
d
o
w

slow start

congestion avoidance

Resource Allocation: Queues

• Sharing access to limited resources

– E.g., a link with fixed service rate

• Simplest case: first-in-first out queue

– Serve packets in the order they arrive

– When busy, store arriving packets in a buffer

– Drop packets when the queue is full

Cost-Effective Sharing of
Resources

• Physical links and switches must be shared among
many users

• Common multiplexing strategies

– (Synchronous) time-division multiplexing (TDM)

– Frequency-division multiplexing (FDM)

CS/ECE 438 © University of Illinois - Spring 2010 67

Statistical Multiplexing

• Statistical Multiplexing (SM)

– On-demand time-division multiplexing

– Scheduled on a per-packet basis

– Packets from different sources are
interleaved

– Uses upper bounds to limit transmission

• Queue size determines capacity per source

CS/ECE 438 © University of Illinois - Spring 2010 68

CS/ECE 438 © University of Illinois - Spring 2010 69

Statistical Multiplexing in a
Switch

• Packets buffered in switch until forwarded

• Selection of next packet depends on policy

– How do we make these decisions in a fair manner? Round
Robin? FIFO?

– How should the switch handle congestion?

…

CS/ECE 438 © University of Illinois - Spring 2010 70

Host

Host Host

HostHost

ChannelChannel

Channels

• Channel

– The abstraction for application-level communication

• Idea

– Turn host-to-host connectivity into process-to-process
communication

APP

APP

Performance

• Latency/delay

– Time from A to B

– Example: 30 msec
(milliseconds)

– Many applications depend on
round-trip time (RTT)

– Components

• Propagation delay over links

• Transmission time

• Queueing delays

• Software processing
overheads

CS/ECE 438 © University of Illinois - Spring 2010 71

Bandwidth vs. Latency

• Relative importance of bandwidth and latency

– Depends on application

• Large file transfers

– bandwidth is critical

• Small messages (HTTP, NFS, etc.)

– latency is critical

• Variance in latency (jitter)

– Can also affect some applications (e.g., audio/video
conferencing)

CS/ECE 438 © University of Illinois - Spring 2010 72

Delay x Bandwidth Product

• Amount of data in “pipe”

– channel = pipe

– delay = length

– bandwidth = area of a cross section

– bandwidth x delay product = volume

CS/ECE 438 © University of Illinois - Spring 2010 73

Bandwidth

Delay

Delay x Bandwidth Product

• Pipe

– Half of data that must be buffered before
sender responds to slowdown request

CS/ECE 438 © University of Illinois - Spring 2010 74

Bandwidth

Delay

CS/ECE 438 © University of Illinois - Spring 2010 75

Delay x Bandwidth Product

• Bandwidth x delay product

– How many bits the sender must transmit before the first bit
arrives at the receiver if the sender keeps the pipe full

– Takes another one-way latency to receive a response from
the receiver

A B

4567891011 123

15 16 17 18 19 20 21 2212 13 14

CS/ECE 438 © University of Illinois - Spring 2010 76

Delay x Bandwidth Product

• Example: Transcontinental Channel
– BW = 45 Mbps

– delay = 50ms

– bandwidth x delay product

= (50 x 10–3 sec) x (45 x 106 bits/sec)

= 2.25 x 106 bits

ms

Mbps

CS/ECE 438 © University of Illinois - Spring 2010 77

Bandwidth vs. Latency

• Relative importance
– 1-byte: Latency bound

• 1ms vs 100ms latency dominates 1Mbps vs 100Mbps BW

– 25MB: Bandwidth bound

• 1Mbps vs 100Mbps BW dominates 1ms vs 100ms latency

25MB

1 Mbps

1B

1Mbps

1ms

100 Mbps 1Mbps

100ms

Bandwidth vs. Latency

• Infinite bandwidth

– RTT dominates

• Throughput = TransferSize / TransferTime

• TransferTime = RTT + 1/Bandwidth x
TransferSize

• Its all relative

– 1-MB file on a 1-Gbps link looks like a 1-
KB packet on a 1-Mbps link

CS/ECE 438 © University of Illinois - Spring 2010 78

CS/ECE 438 © University of Illinois - Spring 2010 79

Performance Notes

• Speed of Light
– 3.0 x 108 meters/second in a vacuum

– 2.3 x 108 meters/second in a cable

– 2.0 x 108 meters/second in a fiber

• Comments
– No queueing delays in a direct link

– Bandwidth is not relevant if size = 1bit

– Software overhead can dominate when distance is small

• Key Point
– Latency dominates small transmissions

– Bandwidth dominates large

Supplementary slides

Network Architecture

• Challenge

– Fill the gap between hardware capabilities and application
expectations, and to do so while delivering “good”
performance

• Hardware and expectations are moving targets

• How do network designers cope with complexity?

– Layering

– Protocols

– Standards

CS/ECE 438 © University of Illinois - Spring 2010 81

CS/ECE 438 © University of Illinois - Spring 2010 82

Abstraction through Layering

• Abstract system into layers:

– Decompose the problem of building a network into manageable
components

• Each layer provides some functionality

– Modular design provides flexibility

• Modify layer independently

• Allows alternative abstractions

Application programs

Hardware

Host-to-host connectivity

Request/reply channelMessage stream channel

Example: Air Travel

• Layers

– Each layer implements a service

– Via its own internal-layer actions

– Relying on services provided by layer below

CS/ECE 438 83

ticket (purchase)
baggage (check)
gates (load)
runway (takeoff)
airplane routing

ticket (complain)
baggage (claim)
gates (unload)
runway (landing)
airplane routing

airplane routing

© University of Illinois - Spring 2010

Air Travel: Services

CS/ECE 438 84

check-in-counter-to-baggage-claim delivery

people transfer: loading
gate to arrival gate

runway-to-runway delivery of plane

airplane routing from source to destination

bag transfer: belt at
check-in counter to

belt at baggage claim

© University of Illinois - Spring 2010

Distributed Layering

CS/ECE 438 85

baggage (claim)

gates/bags (unload)

runway landing

airplane routing

airplane routing

de
pa

rt
in

g
ai

rp
or

t

ar
riv

in
g

ai
rp

or
t

intermediate air
traffic sites

airplane routing airplane routing

baggage (check)

gates/bags (load)

runway takeoff

airplane routing

© University of Illinois - Spring 2010

Layering Concepts

• Encapsulation

– Higher layer protocols create messages and send
them via the lower layer protocols

– These messages are treated as data by the
lower-level protocol

– Higher-layer protocol adds its own control
information in the form of headers or trailers

• Multiplexing and Demultiplexing

– Use protocol keys in the header to determine
correct upper-layer protocol

CS/ECE 438 © University of Illinois - Spring 2010 86

CS/ECE 438 © University of Illinois - Spring 2010 87

Encapsulation

Application
program

Request/
Reply

Host-to-Host

DATA

RRP HDR DATA

Application
program

Request/
Reply

Host-to-Host

DATA

RRP HDR DATA

HHP HDR RRP HDR DATA

Multiplexing/Demultiplexing

• Transport Layer

– Provide logical communication
between application processes
running on different hosts

• Transport protocols run in end
systems

– Send side:

• Break application messages into
segments

• Pass to network layer

– Receive side:

• Reassemble segments into messages

• Pass to application layer

• Multiple available transport protocols

– Internet: TCP and UDP

CS/ECE 438 © University of Illinois - Spring 2010 88

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

CS/ECE 438 © University of Illinois - Spring 2010 89

OSI Architecture

• Open Systems Interconnect (OSI)
Architecture

– International Standards Organization
(ISO)

– International Telecommunications Union
(ITU, formerly CCITT)

– “X dot” series: X.25, X.400, X.500

– Primarily a reference model

CS/ECE 438 © University of Illinois - Spring 2010 90

OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

• Application: Application specific protocols

• Presentation: Format of exchanged data

• Session: Name space for connection mgmt

• Transport: Process-to-process channel

• Network: Host-to-host packet delivery

• Data Link: Framing of data bits

• Physical: Transmission of raw bits

CS/ECE 438 © University of Illinois - Spring 2010 91

OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

Physical

Data Link

Network

Application

Presentation

Physical

Transport

Session

Data Link

Network

Host

User-
Level

Host

OS

Kernel

Router

Transport vs. Network Layer

• Network layer

– Logical
communication
between hosts

• Transport layer

– Logical
communication
between
processes

– relies on,
enhances,
network layer
services

CS/ECE 438 © University of Illinois - Spring 2010 92

Bob

Postman

Logical flow of information

Bob’s
mailbox

Alice

Alice’s
mailbox

Internet Architecture

• Internet Architecture (TCP/IP)

– Developed with ARPANET and NSFNET

– Internet Engineering Task Force (IETF)

• Culture: implement, then standardize

• OSI culture: standardize, then implement

– Made popular with release of Berkeley Software
Distribution (BSD) Unix; i.e., free software

– Standard suggestions debated publicly through “requests
for comments” (RFC’s)

• We reject kings, presidents, and voting. We believe in rough
consensus and running code. – David Clark

CS/ECE 438 © University of Illinois - Spring 2010 93

CS/ECE 438 © University of Illinois - Spring 2010 94

Internet Architecture –
Hourglass Design

FTP

TCP

ModemATMFDDIEthernet

IP

UDP

TFTPNVHTTP

CS/ECE 438 © University of Illinois - Spring 2010 95

Internet Architecture

• Features:

– No strict layering

– Hourglass shape – IP is the focal point

Application

Network

IP

UDPTCP

CS/ECE 438 © University of Illinois - Spring 2010 96

Protocol Acronyms

• (T)FTP - (Trivial) File Transfer Protocol

• HTTP - HyperText Transport Protocol

• NV - Network Video

• SMTP – Simple Mail Transfer Protocol

• NTP - Network Time Protocol

• TCP - Transmission Control Protocol

• UDP - User Datagram Protocol

• IP - Internet Protocol

• FDDI - Fiber Distributed Data Interface

• ATM - Asynchronous Transfer Mode

CS/ECE 438 © University of Illinois - Spring 2010 97

Summary

• Goal
– Understanding of computer network functionality,

with experience building and using computer
networks

• Steps
– Identify what concepts we expect from a network

– Define a layered architecture

– Implement network protocols and application
programs

CS/ECE 438 © University of Illinois - Spring 2010 98

Assignments

• Homework 1

– Due Wednesday February 3rd at the
start of class

• Project 1

– Due Friday February 5th at 9:00pm

