
CS/ECE 438: Communication Networks for Computers                        Spring 2010 

Machine Problem 3                                            Due: 9:00 PM, Wednesday, May 5
th

 
 

Implementation of Unicast Routing Protocols 

 

Please read all sections of this document before you begin coding. 

 

Motivation  
This machine problem moves forward from point-to-point communication issues to implementation of a distributed 

algorithm to control an internetwork.  In particular, you will implement a link state, OSPF-like protocol and a 

distance-vector, RIP-like protocol.  The purpose of the project is to give you some working experience with threads 

and socket programming and familiarize you with unicast routing.  

 

Guidelines 
For this MP, you are encouraged to work in teams of two, although you may work alone if desired (using the same 

grading scale, and thus doing roughly twice as much work). Since you will be implementing two routing protocols, 

we expect you to collaborate on the infrastructure. Additionally, each partner should choose one of the protocols to 

implement. Although you can help each other implement the protocols, each student’s grade will depend on the 

successful implementation of the protocol they chose, as well as the implementation of the joint infrastructure. 

 

Please find a partner as soon as possible (within a week). We will allocate a few minutes of the lecture one week 

after the distribution date for this MP to pair off people without partners. If you attend the lecture and make your 

lack of a partner known to us, we will pair you with another person or will make suitable accommodations. If you do 

not attend the lecture or fail to make your lack of partner known to us, you will have to work alone. 

 

Collaboration, code sharing, and any form of group work with persons other than your partner are forbidden. This 

includes sharing pseudo-code, flow charts or showing your code. It is also forbidden to use code from previous 

semesters obtained from another person. Offenders will be dealt with appropriately. Automated code-similarity 

analysis will be performed. Every year, people have been caught cheating – all that is required to change that is 

honesty. 

 

You are required to make sure that your programs have a valid makefile and compile, link, and run on the EWS 

machines. Programs suffering compilation or link errors when tested will earn no credit. 

 

Check the newsgroup for updates and clarifications. 

 

Please indent and document your code.  Use meaningful names for variables and follow other style guidelines that 

enhance the clarity of your code.  Follow the guidelines in the Hand In section below when turning this assignment. 

 

Project Description  
You will simulate a network topology where nodes are made out of processes and you will use sockets to simulate 

links.  For this project, you must use Unix processes.  Your program will fork a process for each node.  The program 

will read a topology from a file, distribute the topology information to all the nodes which in turn will establish 

connections (links) with each other according to the topology they received.  The nodes will then run a link state 

unicast routing protocol to create unicast routes and use these routes to send data packets.  Specific nodes will then 

be informed of changes in link costs or of link breaks. The nodes will then re-run the routing algorithm to reestablish 

the routes. The process will similarly be done for a distance vector routing protocol.  You should demonstrate the 

correct operation of the unicast protocols by dumping the routing tables at each node and producing trace files that 

show the correct routing of messages.  

 

This project has three parts:  

1. You will first write a program that takes in a description of network connectivity (a connectivity table) and 

spawn several processes. Each forked process corresponds to a simulated router. The manager program 

gives the connectivity information for each router through a TCP connection. 



2. Once each simulated router has figured out its connectivity table, it starts executing the routing algorithm. 

Then, some sources will send data.   

3. Next, some nodes will be informed of changes in link status, forcing a recomputation of the routes. 

Following this, some sources will send data along the potentially new route. 

 

The output of your program will have two parts:  

1. The unicast routing table of each node in the network for each protocol. 

2. A trace of some data packets. 

  

Part 1: Configuring the network  

To configure the network, you will implement a program called the manager, which takes three single file names as 

arguments.  The first file contains a network topology description.  (The second and third files are described below.)  

 

The format of the first file contains an integer followed by a table. The first line of this file contains a single integer 

N.  This means that there are N nodes in the network, whose addresses are 0, 1, 2, ..., N-1.  This line is followed by 

several lines, one for each point-to-point link in the network. Each line has 3 integers separated by white space: X, Y, 

C. X and Y are node numbers between 0 and N-1, and C is a positive integer that represents the cost of a link 

between X and Y.  Here is a sample network and topology description:  
 

7 9 8 1 

5 3 

4 0 

6 2 

70 

70 

70 

70 

70 

70 

70 

20 
40 

60 

60 

40 40 

40 

10  

0 9 40  

0 4 60  

0 2 40  

1 8 70  

2 6 70  

3 9 20  

3 8 70  

3 5 70  

4 7 70  

4 6 40  

5 9 70  

5 7 40  

7 9 60  

8 9 70  

 
After the manager reads the network topology description, it must fork each router.  Then it sends each router its 

connectivity information.  You must implement a simple protocol between the manager and each router so that the 

manager can tell the router:  

 Its own address (a number between 0..N-1)  

 Its connectivity table (who its neighbors are, what are the link costs to each neighbor, and the UDP 

port number for each neighbor).  

 

You should design the message formats for exchanging this information. One way of doing this is:  

 After each router starts up, it opens a TCP connection to the manager (figure out how to do this).  

 Then, the router sends a message to the manager telling it what its own UDP port is.  

 The manager then assigns a node address for the router. 

 Once all routers are assigned node addresses, the manager sends the address along with the 

corresponding connectivity table to each router. 

 At this point, each router starts exchanging routing messages, as described below.  

   

Part 2: Implementing the Routing Algorithms  

The goal of the second part is to implement the routing algorithms discussed in class.  Once this part is implemented, 

you should be able to have each router process (after it has received its connectivity table) send routing updates as 

specified by each protocol. 

 

To implement this functionality, you are expected to design your own data structures, and to design your own packet 

formats.  Note that your packet formats should be very simple.  You may assume that node failures do not happen 

and that link failures only occur as indicated by the manager.  In particular, this means you do not need to implement 



procedures that simulate these failures.  You should carefully read and understand the protocol processing rules. It is 

useful to work out the algorithm on different simple topologies. You need not implement periodic update routing 

messages. Rather, each router, after it receives its connectivity table from the manager or an update from the 

manager, sends out a routing update. Whenever it receives a routing update from a neighbor that causes a change in 

its own table, the router sends an update.  You should figure out a way to determine when the routing exchange has 

converged.  This can be as simple as waiting for several seconds, or up to a minute or by coordinating with the 

manager.   

 

Once the routing tables have converged, a source will send some data to a destination.  

 

The configuration file (the second argument to the manager program) for this part will contain two items: (a) the 

router id of the source, and (b) the router id of the destination.  An example input might be the following:  

 
1 3  

4 0  

 

The manager needs to tell this information to the related nodes through the existing TCP connections. There should 

be enough time gap between each round of sends so that their output does not interfere with each other.  

 

You may assume that only one message is sent.  Make sure you leave enough time between messages to allow them 

to propagate.   

 

The final file indicates changes in the status of specific links and should look similar to the first file, with each line 

having 3 integers separated by white space: X, Y, C. X and Y are again node numbers between 0 and N-1, and C is a 

positive integer that represents the new cost of a link between X and Y, or C could be -1 to represent an infinite link 

cost (i.e., a broken link). 

 

The manager tells this information to both nodes X and Y, which then propagate any necessary routing updates to 

their neighbors. 

 

The manager should alternate between sending a message between a source and a destination and then informing 

nodes of link status updates. We recommend that you first implement and test your protocols without the updates 

and then add them in later. 

 

After both files are read and executed, you should ensure that all your processes terminate gracefully (i.e. the 

TA/grader does not have to use the kill(1) program to terminate your processes). 

  

Design 
You should structure your makefile so that the result of the make command is a single executable, called manager.  

The manager executable should be run with the following syntax:   

manager protocol topo.dat source.dat update.dat > out.port.tr 

This program takes four parameters: 

  “protocol” is 1 for link state and 2 for distance vector 

 “topo.dat” is a file containing a network topology description,  

 “source.dat” is a file containing the source-destination pairs, 

 “update.dat” is a file containing the link status updates. 

 

We will not tell you in advance what topology description, sources and updates we intend to use. You may, however, 

assume that all input files will be syntactically correct and will contain only the required data (i.e., no unrelated 

characters or comments).  

 

To aid us in evaluating your program, your software should output the following files containing the information 

specified below. Be sure to create output in the format given below, otherwise you may not get credit for your 

submission:  

   



 There should be one file named “ports”. This file should have exactly as many lines as there are nodes in 

the network. Each line has two positive integers X and Y, separated by a single space character. X is the 

address of a router, and Y is the UDP port number assigned to the node. The lines should be sorted in 

increasing order of router address (that is, the first line should be for router 0, the second for router 1 and so 

on).  

 For each router and each protocol, there should be one file for each convergence instance of the routing 

table.  The name of this file should be the address of the corresponding router followed by “.ls” for link 

state and by “.dv” for distance vector. Thus, your output should have 2N files named 0, 1, 2,..,N-1 for each 

convergence instance. These files should contain the routing table of the corresponding router for the 

particular protocol.  

o The format of each file for link state routing is a sequence of lines. Each line depicts a routing 

table entry for a single router, say A. The format of a line is:  

X Y C : P1,P2,P3...  

where X is the address of the destination router, Y is the address of the next hop from A towards X, 

C is the cost to reach X from A, and the remainder of the line describes the simple path from A to 

X (including A and X).   

o The format of each file for distance vector routing is a sequence of lines. Each line depicts a 

routing table entry for a single router, say A. The format of a line is:  

X Y C  

where X is the address of the destination router, Y is the address of the next hop from A towards X, 

C is the cost to reach X from A.   

 

 Two files that contain records of traces of each data packet forwarded through the router. The records will 

consist of a sequence of node ids (integers), each on a separate line. Records are delimited by a line that 

begins with a "#" character, perhaps followed by some comments. Make sure you call fflush() after each 

print statement to ensure data is written immediately. The name of the files should be "out.tr.ls" and 

“out.tr.dv” and should be produced by the routers printing to stdout as shown in the program invocation 

above. (Note that you can print error messages to stderr; those will appear on your screen even if you 

redirect the stdout into the trace file.) The format of the trace files should be as follows:  

   
# Trace 1  

source id  

unicast router id  

unicast router id  

...  

destination id  

 

# Trace 2  

source id  

....  

 

Note that the sequence of "router id" entries may change each time you run the program. This is normal. 

 

In addition, you must include a header file mp3.h with the router functions:  

 void update(int node, int cost): This should be called by the router (X) when it receives an 

update message from the manager for the link between X and node with cost. 

 int read_fib(int dst): This should return the next hop node for forwarding a packet to dst. 

You may add more code to your header file, but it must implement these functions. 

 

File Layout  

Your project must have the following:  

 

 Header file: mp3.h contains the declarations of the data structures, all the #include's and #define's. This 

header file alone is then included in the other C files. 

 C files: The whole project should be broken up into at least three C files, one for each part (as described 

above). If you have a good file hierarchy in mind you can break up into more files but that break up should 

be logical and not just spreading functions into many files.  



 Makefile: Now that you have multiple files, you will need to create a makefile so that you can do all the 

compilations by just typing "make". Your makefile should also take care of cleaning up the directory, i.e. 

the command "make clean" should remove all the old *.o files and all the binary files. Read the make(1) 

man page for more information.  

 README: This file should contain a short description of the layout of your project, i.e., a brief description 

of each source file including its purpose. This should also include any notes to the TA as to how to run your 

program. 

 Design Document: This part should briefly describe and justify your design and implementation decisions, 

including any data structures used to support frame formats. Discuss any other interesting aspects of your 

implementation.  As always, you should acknowledge the sources if you copied sections of your code from 

outside courses (even if you modified it later).  And remember to write your name in the beginning of this 

file.  

  

Hand In 
Using Illinois Compass, you can submit your work one or more times before the due date. Please follow the 

following instructions carefully: 

 

 Copy your source code along with a Makefile that, on execution of the command make, causes the 

executable code for the program manager to be generated by the compiler, to a directory named cs438-

mp3-NETID, replacing NETID with your own net-id. Make sure you have included mp3.h as the only 

header file. 

 Tar and gzip the files (tar zcf cs438-mp3-NETID.tar.gz cs438-mp3-NETID). Submit only the tar.gz file as 

an attachment. 

 

MP3 Grading Scheme  

Total of 100 points possible. 

 

Correctness and Functionality (70 pts) 

 Initial setup (10 pts) 

o Address and port for each router (5 pts) 

 Each router gets their address from the manager. 

o Connectivity table for each router (5 pts) 

 Each router will get their connectivity table from the manager. 

 

Implementation of LSR (30 pts) 

 Routing table, without implementation of dynamic update (10 pts) 

 Packet routing trace, without dynamic update (10 pts) 

 Routing table, with dynamic update (5 pts) 

 Packet routing trace, with dynamic update (5 pts) 

 

Implementation of DVR (30 pts) 

 Routing table, without implementation of dynamic update (10 pts) 

 Packet routing trace, without dynamic update (10 pts) 

 Routing table, with dynamic update (5 pts) 

 Packet routing trace, with dynamic update (5 pts) 

 

Design Document (15 pts) 

 

General Behaviour (15 pts) 

 All router threads exit and clean up gracefully 

 Code should be well commented 

 

Deductions 

Points will be deducted for the following:   



 makefile does not create all the necessary executables (-10 pts) 

 No partner file (-10 pts) 

 Handing executable and/or object files (-10 pts) 

 Poor code quality (-5 pts) 

 

No Credit 

No credit will be received:   

 if the specified functions for mp3.h are not defined and implemented 

 if any attempt to subvert/avoid the problem is used   

 if there are compilation or link errors   

 for failure to cite sources, i.e., plagiarism 


