Distributed Systems

CS 425/ CSE 424/ ECE 428

Global Snapshots

Reading: Sections 11.5 (4t ed), 14.5 (5! ed)

© 2010, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Last Lecture |

* Time synchronization
— Berkeley algorithm
— Cristian’ s algorithm
— NTP
— Is it possible to synchronize two servers’ clocks with error=0?

- Lamport’ s timestamps
— Logical timestamps
— Do the clock values of two servers need to be the same?
— What are “concurrent” events?

* Vector Timestamps

Example of a Global State |

[United Nations photo by Paul Skipworth for Eastman Kodak Company ©1995]

The distributed version is challenging |

and important

How would you take this photograph if each
country’ s premier were sitting in their

respective capital, and sending messages to each
other?

That’ s the challenge of distributed global
snapshots!

In a cloud: multiple servers handling multiple
concurrent events and interacting with each other

Without the ability to obtain a global photograph
of the system, it would be a chaotic system (with
potentially lots of inconsistencies)

Detecting Global Properties

P1 P2
object
reference
mess age
a. Garbage mlection < garbage object
P1 wait-for P2
b. Deadlock @
P P2
activate
c. Temination “ |

Algorithms to Find Global States |

« Why?
— (Distributed) garbage collection
— (Distributed) deadlock detection, termination
— Two clients buy the last flight ticket at around the same time

« What?

— Global state
= state of all processes + state of all communication channels
— Capture the instantaneous state of each process

— And the instantaneous state of each communication channel,
i.e., messages in transit on the channels

 How?
— We'll see this lecture!

Obvious First Solution... |

* Synchronize clocks of all processes

« Ask all processes to record their states
at some time t

 Time synchronization possible only approximately
 What about messages in transit?

* Synchronization not required — causality is enough!

Two Processes and Their Initial States

$1000 (none) $50 2000

ac count widget s account widget s

Execution of the Processes |

2. Global state §

3. Global state §

4. Global state %

(empty)

(empty)

(Order 10, $100)

(empty)

>

(Order 10, $100)

(five widgets)

<$900, 0> c,
<
C
<$900, 0> C,
<
¢
<$900, 5> c,
<

(Order 10, $100)

>

(empty)

<$50, 2000>

<$50, 2000>

Send 5 widgets

<$50, 1995>

<$50, 1995>

Process Histories and States |

history(P) = h; =<e/9, ¢/, ... >
prefix history(PkX) = hk = <ep, e/, ...,e, >
Sk : P,’ s state immediately after kth event

< For a set of processes P,, ...,P;

global history: H= U (h)
global state: S = U, (S/i)

acutCCH=hc"Uh,L20U... Uh"

= Jacli | = n}

\/
%* For a process P;, where events e/, e/, ... occur:

10

Consistent States | /m’mp‘m’s““appe”s'bef‘"e"

“* A cut C is consistent if and only if
V., cc(if f = e then f € C)
* A global state S is consistent if and only if
it corresponds to a consistent cut

NS
)(

P3

) Consistent €3
Inconsistent cut cut

11

The “Snapshot” Algorithm |

** Records a set of process and channel states such
that the combination is a consistent global state.

s Assumptions (System Model!):

» There is a communication channel between each pair
of processes (@each process: N-1 in and N-1 out)

» Communication channels are unidirectional
and FIFO-ordered

» No failure, all messages arrive intact, exactly once

» Any process may initiate the snapshot (by sending
“Marker” message)

» Snapshot does not interfere with normal execution

» Each process is able to record its state and the state
of its incoming channels (no central collection)

12

The “Snapshot” Algorithm (2) |

1. Marker sending rule for initiator process P,
<+ Record own state. After P, has recorded its own state

« for each outgoing channel C,
send a marker message on C

2. Marker receiving rule for a process P,

on receipt of a marker over channel C

<+ if P, has not yet recorded its own state

- record P,’ s own state

- record the state of C as “empty”

- for each outgoing channel C, send a marker on C

- turn on recording of messages over other incoming channels
- else

- record the state of C as all the messages received over C
since P, saved its own state; stop recording state of C

13

Chandy and Lamport’s ‘Snapshot’ Algorithm

Marker receiving rule for process p;
On p,’s receipt of a marker message over channel c:
if (p; has not yet recorded its state) it
records its process state now;
records the state of ¢ as the empty set;
turns on recording of messages arriving over other incoming channels;
else
p; records the state of ¢ as the set of messages it has received over ¢
since it saved its state.
end if
Marker sending rule for process p;
After p, has recorded its state, for each outgoing channel c:
p; sends one marker message over ¢
(before it sends any other message over c).

14

Snapshot Example |

P3

0
Ss e, "2 e;°

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

2- P2 receives Marker over C12, records its state (S2), sets state(C12) ={}
sends Marker to P1 & P3; turns on recording for channel C32

3- P1 receives Marker over C21, sets state(C21) ={a}

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

5- P2 receives Marker over C32, sets state(C32) ={b}
6- P3 receives Marker over C23, sets state(C23) ={}
7- P1 receives Marker over C31, sets state(C31) ={}

15

Earlier Example with Snapshot Algorithm |
(empty) ’ <$50, 2000>

1. Global state% §1000. 051
< , 0>

2. Global state §

3. Global state §

4. Global state %

recorded C, channel state = (five widgets)

AO
N

(empty)

(Order 10, $100) , M

(empty)

>
(Order 10, $100) , M

(five widgets)

<$900, 0> c,
<
<

<$900, o> c,
<
<

<$900, 5> C,
<

>
(Order 10, $100)

M

“v

(

recorded C, channel state = empty

<$50, 2000>

Send 5 widgets

<$50, 1995>

<$50, 1995>

16

Provable Assertion: Chandy-Lamport algo.
determines a consistent cut

actual executioneg,eq,...

- TN

— > St rbecordlng recording = Sfipg — P
€Jd INS ends
\ Sna |
pre-snap: e '5,€'1, - €R 1 post-snap: &,e'r.1 ;.-

Let e; and e; be events occurring at p; and p, respectively such that e; 2 ¢;
The snapshot algorithm ensures that
- if e is in the cut then e, is also in the cut.
- if e, > p, records its state, then it must be true that e, > p, records its state.
Why?

= A stable predicate that is true in S-snap must be true in S-final
17

Predicates

Global States useful for detecting Global |

*» A cut is consistent if and only if it does not violate causality

“*A Run is a total ordering of events in H that is
consistent with each h.’ s ordering

¢ A Linearization is a run consistent with happens-
before (—) relation in H.

*» Linearizations pass through consistent global
states.

< A global state S, is reachable from global state S,,

if there is a linearization, L, that passes through S,
and then through S,.

* The distributed system evolves as a series of
transitions between global states S,, S, ,

18

Global State Predicates |

“* A global-state-predicate is a function from the set of
global states to {true, false}, e.g., deadlock,
termination

“*If P is a global-state predicate of reaching
termination, then a global state S0 satisfies liveness
if:

Iiveness(P(So)) =13 Le linearizations from S0 ,SL L passes through SL & P(SL)
= true

A stable global-state-predicate is one that once it
becomes true, it remains true in subsequent global
states, e.g., an object O is orphaned

 if P is a global-state-predicate of being deadlocked,
then a global state S0 satisfies this safety if:
safety(P(S,)) = VS reachable from S,, P(S) = false

Quick Note — Liveness versus Safetz]

Can be confusing, but terms are relevant outside CS too:

* Liveness=guarantee that something good will happen
eventually

— “Guarantee of termination” is a liveness property

gold” is liveness
— A criminal will eventually be jailed
« Safety=guarantee that something bad will never happen
— Deadlock avoidance algorithms provide safety

— A peace treaty between two nations provides safety
— An innocent person will never be jailed

« Can be difficult to satisfy both liveness and safety!

— Guarantee that “at least one of the atheletes in the 100m final will win

20

Summary, Announcements|

* This class: importance of global snapshots,
Chandy and Lamport algorithm, violation of

causality

* Next topic: Multicast, broadcast, impossibility of
consensus in asynchronous systems (see course

website for readings, to be posted soon)

21

Optional Slides|

22

Side Issue: Causality Violation |

Physical Time

Y

P{1 @ Include(obj1)

P2 @

P3 @

P2 has obj1

* Causality violation occurs when order of messages causes an
action based on information that another host has not yet received.

obj1.method()

* In designing a DS, potential for causality violation is important

23

Detecting Causality Violation |

Physical Time

Y

0,00 .@ Violation:
P2 . @12 >
(2,0,0 (2,0,‘22)7/ Q2,2 >
P3 e 20D 205

* Potential causality violation can be detected by vector timestamps.

* If the vector timestamp of a message is less than the local vector
timestamp, on arrival, there is a potential causality violation.

24

