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Distributed Systems 
 

CS 425 / CSE 424 / ECE 428 
 
 

Global Snapshots 
!

Reading: Sections 11.5 (4th ed), 14.5 (5th ed) !

© 2010, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou!
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Last Lecture  

•  Time synchronization 
–  Berkeley algorithm 
–  Cristian’s algorithm 
–  NTP 
–  Is it possible to synchronize two servers’ clocks with error=0? 

•  Lamport’s timestamps 
–  Logical timestamps 
–  Do the clock values of two servers need to be the same? 
–  What are “concurrent” events? 

•  Vector Timestamps 
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[United Nations photo by Paul Skipworth for Eastman Kodak Company ©1995 ]"

Example of a Global State 
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The distributed version is challenging  
and important 

•  How would you take this photograph if each  
country’s premier were sitting in their  
respective capital, and sending messages to each 
other? 

•  That’s the challenge of distributed global  
snapshots! 

•  In a cloud: multiple servers handling multiple 
concurrent events and interacting with each other  

•  Without the ability to obtain a global photograph 
of the system, it would be a chaotic system (with 
potentially lots of inconsistencies) 
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Detecting Global Properties 
p2p1

message
garbage object

objec t
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

ac tivate
passive passivec. Term ination
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Algorithms to Find Global States 

•  Why? 
–  (Distributed) garbage collection 
–  (Distributed) deadlock detection, termination 
–  Two clients buy the last flight ticket at around the same time 

•  What? 
–  Global state 

       = state of all processes + state of all communication channels 
–  Capture the instantaneous state of each process 
–  And the instantaneous state of each communication channel, 

i.e.,  messages in transit on the channels 

•  How? 
–  We’ll see this lecture! 
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Obvious First Solution… 

•  Synchronize clocks of all processes 
•  Ask all processes to record their states 

at some time t 

•  Time synchronization possible only approximately 
•  What about messages in transit? 

 
•  Synchronization not required – causality is enough! 
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Two Processes and Their Initial States 

p1 p2c2

c1

account widget s

$1000 (none)

account widget s

$50 2000
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Execution of the Processes 

p"1" p"2"(empty)"<$1000, 0>" <$50, 2000>"

(empty)"

c"2"

c"1"

1. Global state S"0"

2. Global state S"1"

3. Global state S"2"

4. Global state S"3"

p"1" p"2"(Order 10, $100)"<$900, 0>" <$50, 2000>"

(empty)"

c"2"

c"1"

p"1" p"2"(Order 10, $100)"<$900, 0>" <$50, 1995>"

(five widgets)"

c"2"

c"1"

p"1" p"2"(Order 10, $100)"<$900, 5>" <$50, 1995>"

(empty)"

c"2"

c"1"

Send 5 widgets"
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Process Histories and States  

v  For a process Pi , where events ei
0, ei

1, … occur: 
 

 history(Pi) =  hi = <ei
0, ei

1, … > 
 prefix history(Pi

k) =  hi
k = <ei

0, ei
1, …,ei

k > 
 Si

k : Pi ’s state immediately after kth event 
 
 
v   For a set of processes P1 , …,Pi , …. : 
 

 global history: H = ∪i (hi)  
 global state: S = ∪i (Si

ki)  

 a cut C ⊆ H = h1
c1 ∪ h2

c2 ∪ … ∪ hn
cn 

 the frontier of C = {ei
ci, i = 1,2, … n}   
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Consistent States  
v  A cut C is consistent if and only if 

    ∀e ∈ C (if f → e then f ∈ C) 
v  A global state S is consistent if and only if 

   it corresponds to a consistent cut  

  

P1"

P2"

P3"

e1
0" e1

1" e1
2" e1

3"

e2
0"

e2
1"

e2
2"

e3
0" e3

1" e3
2"

Inconsistent cut!
Consistent 
cut!

Lamport’s “happens-before”"
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The “Snapshot” Algorithm  
v  Records a set of process and channel states such 

that the combination is a consistent global state. 

v  Assumptions (System Model!): 
Ø There is a communication channel between each pair 

of processes (@each process: N-1 in and N-1 out) 
Ø Communication channels are unidirectional 

and FIFO-ordered 
Ø No failure, all messages arrive intact, exactly once 
Ø Any process may initiate the snapshot (by sending 
“Marker” message) 

Ø Snapshot does not interfere with normal execution 
Ø Each process is able to record its state and the state 

of its incoming channels (no central collection) 



13 

The “Snapshot” Algorithm (2)  
1. Marker sending rule for initiator process P0 

v   Record own state. After P0 has recorded its own state 
•   for each outgoing channel C, 

 send a marker message on C  

2. Marker receiving rule for a process Pk 

   on receipt of a marker over channel C 
v   if Pk has not yet recorded its own state 

-  record Pk’s own state 
-  record the state of C as “empty” 
-  for each outgoing channel C, send a marker on C  
-  turn on recording of messages over other incoming channels 

-  else 
-  record the state of C as all the messages received over C 

since Pk saved its own state; stop recording state of C 
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Chandy and Lamport’s ‘Snapshot’ Algorithm 

Marker receiving rule for process pi 	

On pi’s receipt of a marker message over channel c:	

	
if (pi has not yet recorded its state) it	


	
records its process state now;	

	
records the state of c as the empty set;	

	
turns on recording of messages arriving over other incoming channels;	


	
else 	

	
 pi records the state of c as the set of messages it has received over c 	

	
since it saved its state.	


	
end if	

Marker sending rule for process pi	


After pi has recorded its state, for each outgoing channel c:	

	
 pi sends one marker message over c  	

	
(before it sends any other message over c).	
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Snapshot  Example 

  
  

P1"

P2"

P3"

e1
0"

e2
0"

e2
3"

e3
0"

e1
3"

a!

b!

M!

e1
1,2"

M!

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3; 
turns on recording for channels C21 and C31"

e2
1,  2,3"

M!

M!

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {} 
sends Marker to P1 & P3; turns on recording for channel C32"

e1
4"

3- P1 receives Marker over C21, sets state(C21) = {a}"

e3, 
1,  2,3"

M!

M!

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {} 
sends Marker to P1 & P2; turns on recording for channel C23"

e2
4"

5- P2 receives Marker over C32, sets state(C32) = {b}"

e3
5"

6- P3 receives Marker over C23, sets state(C23) = {}"

e1
5"

7- P1 receives Marker over C31, sets state(C31) = {}"
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Earlier Example with Snapshot Algorithm 

p"1" p"2"(empty)"<$1000, 0>" <$50, 2000>"

(empty)"

c"2"

c"1"

1. Global state S"0"

2. Global state S"1"

3. Global state S"2"

4. Global state S"3"

p"1" p"2"(Order 10, $100)  , M"<$900, 0>" <$50, 2000>"

(empty)"

c"2"

c"1"

p"1" p"2"(Order 10, $100)  , M   "<$900, 0>" <$50, 1995>"

(five widgets)"

c"2"

c"1"

p"1" p"2"(Order 10, $100)"<$900, 5>" <$50, 1995>"

M"

c"2"

c"1"

Send 5 widgets"

recorded C1 channel state = (five widgets)                recorded C2 channel state = empty"
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Provable Assertion: Chandy-Lamport algo.  
    determines a consistent cut 

Sini t Sfinal

Ssnap

actual execution e0,e1,...

recording recording 
beg ins end s

pre-sna p: e '0,e'1,...e'R-1 post-snap: e'R,e'R+1 ,...
Let ei and ej be events occurring at pi and pj, respectively such that ei  ej !
The snapshot algorithm ensures that !
•  if ej is in the cut then ei is also in the cut.!
•  if ej  pj records its state, then it must be true that ei  pi records its state.!

!Why?!
!
A stable predicate that is true in S-snap must be true in S-final!
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Global States useful for detecting Global  
Predicates 

v   A cut is consistent if and only if it does not violate causality  

v A Run is a total ordering of events in H that is 
consistent with each hi’s ordering 

v  A Linearization is a run consistent with happens-
before (→) relation in H. 

v  Linearizations pass through consistent global 
states.   

v  A global state Sk is reachable from global state Si, 
if there is a linearization, L, that passes through Si 
and then through Sk. 

v  The distributed system evolves as a series of 
transitions between global states S0 , S1 , …. 
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Global State Predicates  
v  A global-state-predicate is a function from the set of 

global states to {true, false} ,  e.g., deadlock,  
termination 

v If P is a global-state predicate of reaching 
termination, then a global state S0 satisfies liveness 
if: 

liveness(P(S0)) ≡ ∃ L∈ linearizations from S0 ,SL :L passes through SL & P(SL) 
= true 

v A stable global-state-predicate is one that once it 
becomes true, it remains true in subsequent global 
states, e.g., an object O is orphaned 

v  if P is a global-state-predicate of being deadlocked, 
then a global state S0 satisfies this safety if:  

safety(P(S0)) ≡ ∀S reachable from S0, P(S) = false 
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Quick Note – Liveness versus Safety 

Can be confusing, but terms are relevant outside CS too: 
•  Liveness=guarantee that something good will happen 

eventually 
–  “Guarantee of termination” is a liveness property 
–  Guarantee that “at least one of the atheletes in the 100m final will win 

gold” is liveness 
–  A criminal will eventually be jailed 

•  Safety=guarantee that something bad will never happen 
–  Deadlock avoidance algorithms provide safety 
–  A peace treaty between two nations provides safety 
–  An innocent person will never be jailed 

•  Can be difficult to satisfy both liveness and safety! 
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Summary, Announcements 

•  This class: importance of global snapshots, 
Chandy and Lamport algorithm, violation of 
causality 

•  Next topic: Multicast, broadcast, impossibility of 
consensus in asynchronous systems (see course 
website for readings, to be posted soon) 
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Optional Slides 
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Side Issue: Causality Violation  

   

P1"

P2"

P3"

1 2

3 4

5

0

0

0

1!

2!

Physical Time"

4!
6

Include(obj1)"

obj1.method()"

P2 has obj1"

•  Causality violation occurs when order of messages causes an 
action based on information that another host has not yet received."

•  In designing a DS, potential for causality violation is important"
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Detecting Causality Violation  

   

P1"

P2"

P3"

(1,0,0)!

(2,0,0)!

Physical Time"

(2,0,2)!

•  Potential causality violation can be detected by vector timestamps."

•  If the vector timestamp of a message is less than the local vector 
timestamp, on arrival, there is a potential causality violation."

0,0,0!

0,0,0!

0,0,0!

1,0,0!

2,0,1!

2,2,2!2,1,2!

2,0,2!

2,0,0! Violation:  
(1,0,0) < (2,1,2)!


