Distributed Systems Lecture 1: Overview

CS425/CSE424/ECE428
Fall 2011
Nikita Borisov

Objectives

- Define Distributed System
- Overview of distributed systems issues
- Course information

Examples of Distributed Systems

Class suggestions:

- Internet
- Google File System
 - http://labs.google.com/papers/gfs.html
- World Wide Web
- US Postal Service
- Peer-to-peer Networks
- Email

Properties

Class suggestions:

- Multiple Machines
- Redundant / Fault-tolerant
- Complex coordination
- Consistency

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable

-- Leslie Lamport

A distributed system consists of multiple autonomous computers that communicate through a computer network. The computers interact with each other in order to achieve a common goal.

-- Wikipedia (as of today!)

A collection of (probably heterogeneous) automata whose distribution is transparent to the user so that the system appears as one local machine. This is in contrast to a network, where the user is aware that there are several machines, and their location, storage replication, load balancing and functionality is not transparent. Distributed systems usually use some kind of client-server organisation.

Distributed systems are considered by some to be the "next wave" of computing.

-- Free On-Line Dictionary of Computing (FOLDOC)

A distributed system is a collection of independent computers that appears to its users as a single coherent system

-- Tanenbaum & Steen

We define a distributed system as one in which hardware or software components located at networked computers communicate and coordinate their actions only by passing messages

-- Coulouris, Dollimore, Kindberg

Key Properties

Multiple computers

- Concurrent execution
- Independent failures
- Autonomous administrators
- Heterogeneous capacities, properties
- Large numbers (scalability)

Networked communication

- Asynchronous execution
- Unreliable delivery
- Insecure medium

Common goal

- Consistency can discuss whole-system properties
- Transparency can use the system without knowing details

Comparison – Operating Systems

Multiple computers

- Concurrent execution
- Independent failures
- Autonomous administrators
- Heterogeneous capacities, properties
- Large numbers (scalability)

Networked communication

- Asynchronous execution
- Unreliable delivery
- Insecure medium

Common goal

- Consistency can discuss whole-system properties
- Transparency can use the system without knowing details

Comparison – Networking

• *Multiple* computers

- Concurrent execution
- Independent failures
- Autonomous admini

Note: Networks use
Distributed Algorithms
(DNS, BGP)

- Heterogeneous capacities, properties
- Large numbers (scalability)

Networked communication

- Asynchronous execution
- Unreliable delivery
- Insecure medium

Common goal

- Consistency can discuss whole-system properties
- Transparency can use the system without knowing details

Example: WWW

- Multiple computers Web servers, clients
 - Concurrent execution
 - Independent failures
 - Autonomous administrators
 - Heterogeneous capacities, properties
 - Large numbers (scalability)
- Networked communication Internet (TCP/IP)
 - Asynchronous execution
 - Unreliable delivery
 - Insecure medium (HTTPS)
- Common goal Hyperlinked information system
 - Consistency can discuss whole-system properties
 - Transparency can use the system without knowing details

Example: Domain Name Service

- Multiple computers DNS server, clients, caches
 - Concurrent execution
 - Independent failures
 - Autonomous administrators
 - Heterogeneous capacities, properties
 - Large numbers (scalability)
- Networked communication Internet (UDP + TCP/IP)
 - Asynchronous execution
 - Unreliable delivery
 - Insecure medium (DNSSEC)
- Common goal Hierarchical Naming System
 - Consistency can discuss whole-system properties
 - Transparency can use the system without knowing details

Example: Bank

- Multiple computers ATMs, teller computers, servers, credit card scanners
 - Concurrent execution
 - Independent failures
 - Autonomous administrators
 - Heterogeneous capacities, properties
 - Large numbers (scalability)
- Networked communication Internet, local networks, modems, leased lines
 - Asynchronous execution
 - Unreliable delivery
 - Insecure medium
- Common goal Financial Institution
 - Consistency can discuss whole-system properties
 - Transparency can use the system without knowing details

Course Objective

- Concepts in distributed computing
 - Properties
 - Challenges
 - Impossibility results
- Designs of distributed systems
 - Abstractions
 - Algorithms
 - Implementations
- Case studies

Course Information: Staff

- Instructor: Prof. Nikita Borisov
 - Office: 460 Coordinated Science Lab
 - Office hours: 1:30–3:30PM Mondays
- TAs:
 - Ghazale Hosseinabadi
 - Office hours: 2–4PM Fridays
 - Sonia Jahid
 - Office hours: 3–5PM Wednesdays, 0207 Siebel

Sources of Information

- Course website: (will be running by Thursday)
 - Announcements, homework, MPs,
 - Lecture list, reading assignments, slides
- Course newsgroup: class.fa11.cs425
 - Announcements, questions, clarifications
 - Monitor daily; announcements will not be emailed
 - SLA: one business day response time
- Email: cs425-help@cs.illinois.edu
 - SLA: slower than newsgroup

Books

- Distributed Systems: Concepts and Design,
 Coulouris et al., 4th ed.
 - Earlier eds may be acceptable
 - Your responsibility to find correct homework questions & reading sections
- Other texts
 - Distributed Systems: An Algorithmic Approach, Ghosh
 - Distributed Systems: Principles and Paradigms,
 Tanenbaum & Steen
 - Distributed Algorithms, Lynch

Grade Components

Assignments

- Homeworks (16%)
 - Approx. every 2 weeks
 - Must be typed
 - Must be done individually
- MPs (32%)
 - 3 projects
 - Groups of 2

Exams

- Midterm (16%)
 - Date TBA
- Final (32%)
 - Friday, Dec 16, 7–10pm
 - (may be changed)

Participation (4%)

- i>Clickers (2%)
 - Available at bookstore
 - \$36 new, \$25 used
 - Can be re-sold
 - Review quiz at each lecture
 - Points for answering
 - No points for correctness
- Subjective participation (2%)
 - Lecture involvement
- Perfect attendance not needed to get full 4%

Grading

- Grades may be curved
- Undergrads & grads curved separately
- Academic integrity violations have serious consequences
 - Min: 0% on assignment
 - Max: expulsion
 - All cases are reported to CS, your college, and senate committee
- Note: any sharing of code outside group is forbidden

Guaranteed grades:

>90%: A

>80%: B

>70%: C

>60%: D

>50%: pass

Acknowledgments

- Material borrowed from:
 - Prof. Jennifer Hou
 - Prof. Mehdi Harandi
 - Prof. Klara Nahrstedt
 - Prof. Indranil Gupta
 - Prof. Nitin Vaidya
 - Prof. Sayan Mitra

Lecture Summary

- Distributed Systems properties
 - Multiple computers
 - Networked communication
 - Common goal
- Course goals
 - Concepts, designs, case studies
- Your responsibilities
 - Read assigned sections
 - Monitor newsgroup
 - Participate in lectures

Next Lecture

Failure Detection

- Readings: §2.3.2, §12.1