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Motivation

We design algorithms, implement and deploy
them

But when you factor in the real world, unexpected
characteristics may arise

Important to understand these characteristics to
build better distributed systems for the real world

We' 11 look at two areas: P2P systems, Clouds



How do you find characteristics of
these Systems 1n Real-life Settings?

* Write a crawler to crawl a real working system
* Collect traces from the crawler
» Tabulate the results

« Papers contain plenty of information on how data
was collected, the caveats, 1fs and buts of the
Interpretation, etc.

— These are important, but we will ignore them for this
lecture and concentrate on the raw data and conclusions



Measurement, Modeling, and Analysis
of a Peer-to-Peer File-Sharing
Workload

Gummadi et al
Department of Computer Science
University of Washington



What They Did

2003 paper analyzed 200-day trace of
Kazaa traffic

Considered only traffic going from U.
Washington to the outside

Developed a model of multimedia
workloads
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Results Summary

Users are patient

Users slow down as they age

Kazaa 1s not one workload

Kazaa clients fetch objects at-most-once
Popularity of objects 1s often short-lived
Kazaa 1s not Zipf



User characteristics (1)

» Users are patient

100MB+ objects
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User characteristics (2)

» Users slow down as they age
— clients “die”

— older clients ask for less each time they use
system
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User characteristics (3)

e Client activity

— Tracing used could only detect users when their
clients transfer data

— Thus, they only report statistics on client
activity, which is a lower bound on availability

— Avg session lengths are typically small
(median: 2.4 mins)
e Many transactions fail

 Periods of 1nactivity may occur during a request if

client cannot find an available peer with the object
9



Object characteristics (1)

e Kazaa is not
one workload

*This does not
account for
connection overhead

(CDF)
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Object characteristics (2)

« Kazaa object dynamics
— Kazaa clients fetch objects at most once

— Popularity of objects 1s often short-lived

— Most popular objects tend to be recently-born
objects

— Most requests are for old objects (> 1 month)

e 72% old — 28% new for large objects
e 52% old — 48% new for small objects
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Object characteristics (3)

« Kazaa 1s not Zipf

o Zipf s law: popularity of ith-most popular object is
proportional to i%, (a: Zipf coefficient)

* Web access patterns are Zipf

« Authors conclude that Kazaa is not Zipf because of
the at-most-once fetch characteristics
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Understanding Availability

R. Bhagwan, S. Savage, G. Voelker
University of California, San Diego
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What They Did

* Measurement study of peer-to-peer (P2P) file
sharing application
— Overnet (January 2003)

— Based on Kademlia, a DHT based on xor routing metric
* Each node uses a random self-generated ID
e The ID remains constant (unlike IP address)
« Used to collect availability traces

— Closed-source
* Analyze collected data to analyze availability

« Availability = % of time a node 1s online
(node=user, or machine)
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What They Did

Crawler:

— Takes a snapshot of all the active hosts by repeatedly requesting 50

randomly generated IDs.

— The requests lead to discovery of some hosts (through routing
requests), which are sent the same 50 IDs, and the process is
repeated.

— Run once every 4 hours to minimize impact

Prober:

— Probe the list of available IDs to check for availability
* By sending a request to ID 7; request succeeds only if / replies
* Does not use TCP, avoids problems with NAT and DHCP
— Used on only randomly selected 2400 hosts from the initial list

— Run every 20 minutes

All Crawler and Prober trace data from this study is
available for your project (ask Indy if you want access)

15



Scale of Data

Ran for 15 days from January 14 to January
28 (with problems on January 21) 2003

Each pass of crawler yielded 40,000 hosts.

In a single day (6 crawls) yielded between
70,000 and 90,000 unique hosts.

1468 of the 2400 randomly selected hosts
probes responded at least once
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Results Summary

Overall availability 1s low

2. Daiurnal patterns existing in availability

. Availabilities are uncorrelated across

nodes
. High Churn exists
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Figure 1: Percentage of hosts that have more than one IP
address across different periods of time.
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Availability
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Availability vs. duration
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Percentage of host pairs (%)

35

30

25

20

15 ¢

10

Independence

Lu..m.lm""wumm
0

-0.5 0.5
Difference between P(Y=1/X=1) and P(Y=1)

21



An Evaluation of Amazon’s Grid
Computing Services: EC2, §3,
and SOS

Simson L. Garfinkel
SEAS, Harvard University
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What they Did

 Did bandwidth measurements

— From various sites to S3 (Simple Storage
Service)

— Between S3, EC2 (Elastic Compute Cloud)
and SQS (Simple Queuing Service)
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Results Summary

1. Effective Bandwidth varies heavily based on
geography!

2. Throughput is relatively stable, except when
internal network was reconﬁgured

3. Read and Write throughputs: larger 1s better
— Decreases overhead

4. Consecutive requests receive performance that
are highly correlated.

5. QoS received by requests fall into multiple
“classes”
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Read Read Read | Write Write  Write
Host Location N Avg top 1%  Sidev Avg top 1%  Sidev
Netherlands Netherlands 1,572 212 294 34 382 493 142
Harvard Cambridge, MA 914 412 796 121 620 844 95
ISP PIT Pittsburgh, PA 852 530 1,005 183 | 1,546 2,048 404
MIT Cambridge, MA 864 651 1,033 231 | 2,200 2,741 464
EC2 Amazon 5,483 799 1,314 320 | 5,279 10,229 2,209

Units are in bytes per second

Table 2: Measurements of S3 read and write performance in KBytes/sec from different locations on the
Internet, between 2007-03-29 and 2007-05-03.

CDF of read throughput, 2007-03-22 through 2007-04-08
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Figure 9: Cumulative Distribution Function (CDF) plots for IMB GET transactions from four locations on the Internet
and from EC2.

Effective Bandwidth varies heavily based on (network) geography!



100 MB Get Ops from EC2 to S3
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Throughput is relatively stable, except when internal
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CDF of read throughput, 2007-03-22 through 2007-04-08
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siz2s,

Read and Write throughputs: larger 1s better -
(but beyond some block size, it makes little difference).



100 B/s

Jitter of successive 1Byte S3 requests (N=1464)
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Figure 7: Scatter plots of bandwidth successive S3 GET requests for I Byte (left) and 100 Megabyte (right) transac-
tions. The X axis indicates the speed of the first request, while the Y axis indicates the speed of the second.

Concurrency: Consecutive requests receive performance that are

highly correlated.
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Figure 6: Histogram of 100Mbyte GET/ throughput,
March 20 through April 7.

QoS received by requests fall into multiple “classes”
- 100 MB xfers fall into 2 classes. 29



Summary

We design algorithms, implement and deploy them

But when you factor in the real world, unexpected
characteristics may arise

Important to understand these characteristics to build better
distributed systems for the real world

Reading for this lecture: see links on course website
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