
1

CS 425
Distributed Systems

Fall 2011
Slides by Indranil Gupta

Measurement Studies

All Slides © IG Acknowledgments: Jay Patel

Motivation

•  We design algorithms, implement and deploy
them

•  But when you factor in the real world, unexpected
characteristics may arise

•  Important to understand these characteristics to
build better distributed systems for the real world

•  We’ll look at two areas: P2P systems, Clouds

3

How do you find characteristics of
these Systems in Real-life Settings?

•  Write a crawler to crawl a real working system
•  Collect traces from the crawler
•  Tabulate the results

•  Papers contain plenty of information on how data
was collected, the caveats, ifs and buts of the
interpretation, etc.
–  These are important, but we will ignore them for this

lecture and concentrate on the raw data and conclusions

4

Measurement, Modeling, and Analysis
of a Peer-to-Peer File-Sharing

Workload

Gummadi et al
Department of Computer Science

University of Washington

5

What They Did

•  2003 paper analyzed 200-day trace of
Kazaa traffic

•  Considered only traffic going from U.
Washington to the outside

•  Developed a model of multimedia
workloads

6

Results Summary

1.  Users are patient
2.  Users slow down as they age
3.  Kazaa is not one workload
4.  Kazaa clients fetch objects at-most-once
5.  Popularity of objects is often short-lived
6.  Kazaa is not Zipf

7

User characteristics (1)
•  Users are patient

8

User characteristics (2)
•  Users slow down as they age

–  clients “die”
–  older clients ask for less each time they use

system

9

User characteristics (3)
•  Client activity

– Tracing used could only detect users when their
clients transfer data

– Thus, they only report statistics on client
activity, which is a lower bound on availability

– Avg session lengths are typically small
(median: 2.4 mins)

•  Many transactions fail
•  Periods of inactivity may occur during a request if

client cannot find an available peer with the object

10

Object characteristics (1)
•  Kazaa is not

one workload

• This does not
account for
connection overhead

11

Object characteristics (2)

•  Kazaa object dynamics
– Kazaa clients fetch objects at most once
– Popularity of objects is often short-lived
– Most popular objects tend to be recently-born

objects
– Most requests are for old objects (> 1 month)

•  72% old – 28% new for large objects
•  52% old – 48% new for small objects

12

Object characteristics (3)
•  Kazaa is not Zipf
•  Zipf’s law: popularity of ith-most popular object is

proportional to i-α, (α: Zipf coefficient)
•  Web access patterns are Zipf
•  Authors conclude that Kazaa is not Zipf because of

the at-most-once fetch characteristics

Caveat: what is an “object”
in Kazaa?

13

Understanding Availability

R. Bhagwan, S. Savage, G. Voelker
University of California, San Diego

14

What They Did
•  Measurement study of peer-to-peer (P2P) file

sharing application
–  Overnet (January 2003)
–  Based on Kademlia, a DHT based on xor routing metric

•  Each node uses a random self-generated ID
•  The ID remains constant (unlike IP address)
•  Used to collect availability traces

–  Closed-source
•  Analyze collected data to analyze availability
•  Availability = % of time a node is online

(node=user, or machine)

15

•  Crawler:
–  Takes a snapshot of all the active hosts by repeatedly requesting 50

randomly generated IDs.
–  The requests lead to discovery of some hosts (through routing

requests), which are sent the same 50 IDs, and the process is
repeated.

–  Run once every 4 hours to minimize impact
•  Prober:

–  Probe the list of available IDs to check for availability
•  By sending a request to ID I; request succeeds only if I replies
•  Does not use TCP, avoids problems with NAT and DHCP

–  Used on only randomly selected 2400 hosts from the initial list
–  Run every 20 minutes

•  All Crawler and Prober trace data from this study is
available for your project (ask Indy if you want access)

What They Did

16

Scale of Data

•  Ran for 15 days from January 14 to January
28 (with problems on January 21) 2003

•  Each pass of crawler yielded 40,000 hosts.
•  In a single day (6 crawls) yielded between

70,000 and 90,000 unique hosts.
•  1468 of the 2400 randomly selected hosts

probes responded at least once

17

Results Summary

1.  Overall availability is low
2.  Diurnal patterns existing in availability
3.  Availabilities are uncorrelated across

nodes
4.  High Churn exists

18

Multiple IP Hosts

19

Availability

Availability vs. duration

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rc

en
ta

ge
 o

f h
os

ts

Host availability

10 hours
4 days
7 days

Fig. 3. The dynamic nature of the availability distribution. It varies with the time period over
which availability is calculated.

4.3 Host availability

We calculated host availability in Figure 2 over seven days, the entire period of our
active probe measurements. However, the period of time over which host availability
is calculated can change the distribution. To determine the extent of this effect, we
varied the time period over which we calculate host availability. Figure 3 shows the
results of this experiment. Over a period of 10 hours, the distribution curve is slightly
concave, while for a period of 4 days, the distribution curve becomes convex. Over 7
days, the convexity of the curve increases. And we suspect that with longer periods
of measurement this will only increase. Put differently, the distribution curve moves
more and more to the left as the period over which availability is calculated increases.
This stems from the fact that we are probing the same hosts over the entire period, and
the longer the period of time, the greater the chances of a host being unavailable. We
are continuing our probing measurements for longer periods of time to validate this
hypothesis.

The implication is that, when using an availability distribution to characterize hosts
in the system or simply using a fractional value to reflect mean host availability in mod-
els of system behavior (e.g., [4]), one needs to also specify the period of time over which
the availability measurement holds. Also, the fact that host availability decreases over
longer periods of time motivates the need for periodic file refreshes (redistributions, or
re-insertions) in the system.

4.4 Time-of-day effects

Next, we characterize the effect of time-of-day on host availability. To do this we need
to see how the host availability pattern varies with local time, where local time is based
on the geographic location of each host. To calculate local time for each host, we use
CAIDA’s Netgeo tool [10] to determine the longitude of the host using its current IP

20

Independence

We characterize the dependence between every host pair using conditional proba-
bilities. Consider two hosts X and Y. We need to determine the conditional probability
of Y being available given that X is available for a given time-of-day . Call this value
P(Y=1/X=1). If this is equal to the probability that Y is available whether or not X is
available, or P(Y=1), then X and Y are independent. If independent, then the availability
of X at time does not imply anything about the availability of Y at that time.

0

5

10

15

20

25

30

35

-1 -0.5 0 0.5 1

Pe
rc

en
ta

ge
 o

f h
os

t p
ai

rs
 (%

)

Difference between P(Y=1/X=1) and P(Y=1)

Fig. 5. Probability density function of the difference between P(Y=1/X=1) and P(Y=1).

We calculated P(Y=1/X=1) and P(Y=1) for every host pair from our empirical data
for each hour in the trace. Figure 5 shows the probability density function of the differ-
ence between these two values. The graph shows that more than 30% of all pairs have 0
difference. Further, 80% of all host pairs lie between +0.2 and -0.2, indicating that there
is significant independence between host pairs. So if we were to pick a small subset of
hosts randomly, it is highly unlikely that the availabilities of all of them are strongly
dependent on each other, even though each may show a strong correlation with time of
day. For example, in CFS, the size of this subset is 6, while in Kademlia, it is 20. The
probability of all these hosts failing together would be very low.

4.6 Arrivals and departures

Host turnover is important for peer-to-peer systems that rely upon long-term host mem-
bership. For example, archival peer-to-peer storage systems like Oceanstore use a high
degree of redundancy to mask host failures and departures over time. The rate of host
turnover fundamentally determines the rate at which the system must refresh and re-
store the redundancy in the system to maintain file availability [2,16], and the overhead
that this process entails.

To characterize host membership turnover in Overnet, we would like to determine
the rate at which new hosts enter the system for the first time (arrive) and the rate
at which existing hosts leave the system permanently (depart). Note the distinction

21

22

An Evaluation of Amazon’s Grid
Computing Services: EC2, S3,

and SQS

Simson L. Garfinkel
SEAS, Harvard University

23

What they Did

•  Did bandwidth measurements
– From various sites to S3 (Simple Storage

Service)
– Between S3, EC2 (Elastic Compute Cloud)

and SQS (Simple Queuing Service)

24

Results Summary
1.  Effective Bandwidth varies heavily based on

geography!
2.  Throughput is relatively stable, except when

internal network was reconfigured.
3.  Read and Write throughputs: larger is better

–  Decreases overhead
4.  Consecutive requests receive performance that

are highly correlated.
5.  QoS received by requests fall into multiple
“classes”

25 Effective Bandwidth varies heavily based on (network) geography!

26

100 MB Get Ops from EC2 to S3

Throughput is relatively stable, except when internal
network was reconfigured.

27 Read and Write throughputs: larger is better
 (but beyond some block size, it makes little difference).

28

Concurrency: Consecutive requests receive performance that are
highly correlated.

29
QoS received by requests fall into multiple “classes”

 - 100 MB xfers fall into 2 classes.

30

Summary
•  We design algorithms, implement and deploy them
•  But when you factor in the real world, unexpected

characteristics may arise
•  Important to understand these characteristics to build better

distributed systems for the real world
•  Reading for this lecture: see links on course website

