CS425 / CSE424 / ECE428 — Distributed Systems — Fall 2011

Paxos

Some material derived from slides by Leslie Lamport

2011-11-15 Nikita Borisov - UIUC

Problem

- Achieve consensus
 - In an asynchronous network
 - Non-Byzantine failures
- Safety requirements
 - Only a proposed value may be chosen
 - Only a single value is chosen
 - Process never learns of a chosen value unless it has actually been chosen
- Also, liveness

Actors

- Proposer
 - Proposes values
- Acceptor
 - Accepts (or rejects) values
- Learner
 - Finds out what value has been chosen
- Typically a process acts as one or more of these (often all 3)

Choosing a Value

- Acceptor:
 - Accepts or rejects (ignores) proposals
- Consistency guarantee
 - Value is chosen if and only if a majority of acceptors accepted this value
- Simple (common!) case: one proposer
 - Must accept proposal, o/w no progress!

P1: Acceptor must accept the first proposal it receives.

More proposers

- What if there are two proposers?
 - Proposer 1 sends value v to N/2 acceptors
 - Proposer 2 sends value v' to the other N/2 acceptors
- P1 means that each acceptor accepts the corresponding proposal
 - No majority, therefore deadlock
- Solutions?

Multiple Acceptances

- Acceptors must accept multiple proposals
- Therefore, multiple proposals may be chosen (accepted by a majority). (Why?)
- Therefore, must ensure safety

2011-11-15

P2. If a proposal with value v is chosen, then every higher-numbered proposal that is chosen has value v.

 Note: every proposal must have unique number

P2. If a proposal with value v is chosen, then every higher-numbered proposal that is chosen has value v.

 A chosen proposal is accepted by at least one acceptor, so:

P2^a. If a proposal with value v is chosen, then every higher-numbered proposal **accepted** by any acceptor has value v.

$$(P2^a => P2)$$

Multiple Proposals

P1: Acceptor must accept the first proposal it receives. $P2^{\alpha}$. If a proposal with value v is chosen, then every highernumbered proposal accepted by any acceptor has value v.

- Asynchronous network
 - Acceptor c does not hear some chosen proposal v
 - Proposer p makes a new proposal v' to c
 - By P1, c must accept. By P2, v' = v.

 $P2^b$. If a proposal with value v is chosen, then every higher-numbered proposal **issued** by any proposer has value v.

$$(P2^b => P2^a => P2)$$

Invariant

P2^b. If a proposal with value v is chosen, then every higher-numbered proposal **issued** by any proposer has value v.

- A chosen proposal is accepted by majority of acceptors
 - P2^c. For any v and n, if a proposal with value v and number n is issued, then there is a set S consisting of a majority of acceptors such that either:
 - (a) no acceptor in S has accepted any proposal numbered less than n, or
 - (b) v is the value of the highest-numbered proposal among all proposals numbered less than n accepted by acceptors in S.

How to satisfy invariant?

- Proposer must know what proposals have been accepted by a majority of acceptors.
 - Ask acceptors about what they have accepted
- But, remember, asynchronous
 - New proposals may be made after reply is sent
- E.g.:
 - p asks c about accepted proposals
 - c replies with empty set {}
 - p' proposes (n,v) to c
 - c accepts
 - p proposes (m,v') with m>n to c, violating P2^c

Solution

- Don't accept proposal from p'!
 - p asks c about accepted proposals with numbers less than m (prepare request)
 - c replies with empty set {}, and promises not to accept proposals with numbers less than m
 - p' proposes (n,v) to c, with n < m</p>
 - c rejects (ignores) p's proposal
 - p proposes (m,v') with m>n to c

P1^a. An acceptor can accept a proposal numbered n if and only if it has not responded to a prepare request with a number > n.

Paxos algorithm

Phase 1 (prepare):

2011-11-15

- A proposer selects a proposal number n and sends a prepare request with number n to majority of acceptors.
- If an acceptor receives a prepare request with number n greater than that of any prepare request it saw, it responses YES to that request with a promise not to accept any more proposals numbered less than n and include the highest-numbered proposal (if any) that it has accepted.

Paxos algorithm

- Phase 2 (accept):
 - If the proposer receives a response YES to its prepare requests from a majority of acceptors, then it sends an accept request to each of those acceptors for a proposal numbered n with a values v which is the value of the highest-numbered proposal among the responses.
 - If an acceptor receives an accept request for a proposal numbered n, it accepts the proposal unless it has already responded to a prepare request having a number greater than n.

Definition of chosen

 A value is chosen at proposal number n iff majority of acceptor accept that value in phase 2 of the proposal number.

Paxos' s properties

- P1: Any proposal number is unique.
- P2: Any two set of acceptors have at least one acceptor in common.
- P3: the value sent out in phase 2 is the value of the highest-numbered proposal of all the responses in phase 1.

Interpretation of P3

```
# value pool of acceptors
           a_1 a_2 a_3 a_4
2
      α
                                    a_5
5 β
                  a_1 a_2 a_3
                         \mathbf{a}_2 \mathbf{a}_4 \mathbf{a}_5
14 α
27 β
                  \mathbf{a}_1
                       \mathbf{a}_3 \quad \mathbf{a}_4
29 β
                         \mathbf{a_2} \mathbf{a_3} \mathbf{a_4}
```

Proof of safety

- Claim: if a value v is chosen at proposal number n, any value that is sent out in phase 2 of any later prososal numbers must be also v.
- Proof (by contradiction): Let m is the first proposal number that is later than n and in phase 2, the value sent out is not v.

Proof

```
# value pool of acceptors

n v ...
an+1v ...
m-1 v ...
m v' ...
a
m v' ...
```

the highest # chosen in phase 2 ≥

the highest # that a accept \geq n

Learning a chosen value

- There are some options:
 - Each acceptor, whenever it accepts a proposal, informs all the learners.
 - Acceptors informs a distinguished learner (usually the proposer) and let the distinguished learner broadcast the result.

Tunable knobs

- Acceptors have many options to response:
 - Prepare request: No/Yes
 - Accept request: No/Yes if it didn't promise not to do so
- Back off time after abandon a proposal: exponential back-off/pre-assigned values
- Should we wait for nodes to online in each phase?

Applications

- Chubby lock service.
- Petal: Distributed virtual disks.
- Frangipani: A scalable distributed file system.

2011-11-15 Nikita Borisov - UIUC 21