CS425 [CSE424 [ECE428 — Distributed Systems — Fall 2011

Decentralized File Systems

Some material derived from slides by Prashant Shenoy (Umass) &
courses.washington.edu/css434/students/Coda.ppt

2011-11-08 Nikita Borisov - UIUC

CODA
Distributed revision control

1111111 -08 Nikita Borisov - UIUC

AFS Review

Assumptions
Clients have disks

Read/write & write/write conflicts are rare
Techniques

Whole-file long-term caching

Leases / promises to operate w/o server contact
for 15 minutes

CODA idea: extend to longer than 15 minutes

2011-11-08 Nikita Borisov - UIUC 3

CODA Approach

Many replicas
Servers: 1%t class replicas

Unlike AFS, more than one, even with read/write

Clients: 2" class replicas
Each volume has a volume server group (V5G)

Available VSG (AVSG): reachable members of
VSG

AVSG =VSG (Normal operation)
AVSG G VSG (Partition)
AVSG =@ (Disconnected operation)

1111111 -08 Nikita Borisov - UIUC 4

CODA clients

Three states:
: cache files aggressively

: operate in disconnected mode, satisfy
read/write requests from cache

: propagate local changes back to
servers

(HOARDING)

Disconnection | | Reintegration
Disconnection completed

N

(EMULATION) }EINTEGRATIOI\D

Reconnection

2011-11-08 Nikita Borisov - UIUC 5

Occurs during normal, connected operation
Add to cache:

Files that are accessed

Files in Hoard Database (HDB) — user specified
Maintain leases (promises) on cached files
On lease break:

Immediately fetch new file?
Wait until next reference?

2011-11-08 Nikita Borisov - UIUC 6

Hoard Walk

Periodically (every 10 minutes)
Walk cache & hoard database
Refresh any invalidated files

If not refreshed on demand
Restore equilibrium in cache
Priorities
HDB specifies hard-coded priorities
Recently access files obtain (decaying) priority

Equilibrium: pri(file in cache) > pri(file not in
cache)

1111111 -08 Nikita Borisov - UIUC 7

Client Caching

Session S 4 Session S:A

Client A — T

Open(RD) Close
Open(RD)

Invalidate
File f (callback break)

OK (no file transfer)

Open(WR)
Client B — —_—

Session Sp Session S’B

Callback break only after close

2011-11-08 Nikita Borisov - UIUC 8

Disconnected Operation

L ocal cache emulates server

Serves files from cache
Cache miss = error

Performs access checks
Stores writes in replay log
Replay log

Stored in Recoverable Virtual Memory (stable
storage)

History of directory operations

Last write to a file (remember, whole file update
semantics)

2011-11-08 Nikita Borisov - UIUC

Reintegration

Replay changes stored in log
Merge directory operations

Execute (last) file storage operation
Update cached files based on server version
Conflicts (write/write only)

Abort reintegration

Send log for user for manual resolution
"Future thoughts”

Automatic conflict resolvers
Unit of integration < volume

2011-11-08 Nikita Borisov - UIUC 10

A successful open means:
The file received is the latest version.

Or there was 1+ lost callbacks and the file received

is the latest version within the t seconds of a
Venus server probe.

Or the client is disconnected but the file is cached
A failed open means:

There is a conflict that must be manually resolved

Or the client is disconnected and the file is not
cached

2011-11-08 Nikita Borisov - UIUC 11

Closes

A successful Close means:

All members of the AVSG have received the latest
version of the file.
Or the client is disconnected.

A failed Close means:

There is a conflict in the AVSG that must be manually
resolved

Because the file originally received was not current

Or because the AVSG expanded and gained a modifed
version of the file

A Close will always succeed if the client is
disconnected

2011-11-08 Nikita Borisov - UIUC 12

Replica Consistency

Consistency strategy:
Read one/write all
Available copies replication
~or reads: preferred server (based on latency,

oad, etc.)
For writes: all servers in AVSG

1111111 -08 Nikita Borisov - UIUC 13

Each file has a Coda Version Vector (CVV)
Incremented by each server at each update

E.qg., initial value: [1,1,1]
Write to servers 1,2:[2,2,1]

Write to server 3 [1,1,2]
At reconnection:

[1,1,2] and [2,2,1] => conflict
Manual resolution!

2011-11-08 Nikita Borisov - UIUC 14

CODA Redux

Enable disconnected operation & handle
partitions

Use optimistic cache consistency
Manual conflict resolution

Assumption (validated): write/write conflicts are
rare

What if they aren’t?

1111111 -08 Nikita Borisov - UIUC 15

Version Control Systems

Used for managing large software projects
Properties:

Many developers: frequent write/write conflicts
Changes both fix & introduce bugs

Useful to “unroll” changes
Useful to keep history of files

1111111 -08 Nikita Borisov - UIUC 16

RCS

Revision Control System (RCS)
Pessimistic sharing workflow
co file [locks copy]
[edit file]

ci file [commits changes, unlocks copy]
Unit of control: single file
Storage: single filesystem

1111111 -08 Nikita Borisov - UIUC 17

CVS

Based on RCS, but more “advanced”
Unit of control: directory
Client-server architecture
Optimistic sharing workflow:

Checkout [no lock, done once]
Update [receive latest version]
Edit
Commit

If conflict
Edit
Commit => conflict
Update — merge changes
Commit

2011-11-08 Nikita Borisov - UIUC 18

Mostly automated
Maintain diffs / patches between versions
Record context of edits

Replay edits if context can be identifies
Conflicts still exist

But more rare

To be resolved manually

2011-11-08 Nikita Borisov - UIUC 19

Distributed Version Control System

Every copy is a full repository

Peer-to-peer architecture
Revisions committed to local copy

"Replay log” maintained locally
Bi-directional exchange of changes

Between any two repositories
Complex workflow possible

1111111 -08 Nikita Borisov - UIUC

Example: Git workflow

Obtain local copy:

git clone repository-url
Make local edits

edit

git commit

edit

git commit
Update local copy

git pull repository

Merge any remote and local changes
Update remote copy

git push repository

2011-11-08 Nikita Borisov - UIUC 21

Other concepts

Branching
Rebasing
Tags

1111111 -08 Nikita Borisov - UIUC

