CS425/CSE424/ECE428 — Distributed Systems

Distributed File Systems

Outline

Why remote file systems?
VES interception
NFS vs. AFS

Architectural assumptions & goals
Namespace

Authentication, access control
/O flow

Rough edges

2011-11-03 Nikita Borisov - UTUC

Why remote file systems?
Lots of “access data everywhere”
technologies

Laptop
Multi-gigabyte flash-memory keychain USB
devices

4G Hitachi MicroDrive fits in a CompactFlash slot
iPod
Are remote file systems dinosaurs?

2011-11-03 Nikita Borisov - UTUC

Remote File System Benefits

Reliability
Not many people carry multiple copies of data
Multiple copies with you aren't much protection

Backups are nice

Machine rooms are nice
Temperature-controlled, humidity-controlled
Fire-suppressed

Time travel is nice too

Sharing
Allows multiple users to access data
May provide authentication mechanism

2011-11-03 Nikita Borisov - UTUC

Remote File System Benefits

Scalability

Large disks are cheaper
Locality of reference

You don't use every file every day...

Why carry everything in expensive portable storage?

Auditability

Easier to know who said what when with
central storage...

2011-11-03 Nikita Borisov - UTUC 5

Distributed File System (DFS)

Requirements

Transparency - server-side changes should be invisible to the
client-side.

Access transparency: A single set of operations is provided for access
to local/remote files.

Location Transparency: All client processes see a uniform file name
space.

Migration Transparency: When files are moved from one server to
another, users should not see it

Performance Transparency
Scaling Transparency
File Replication

A file may be represented by several copies for service efficiency and
fault tolerance.

Concurrent File Updates

Changes to a file by one client should not interfere with the operation
of other clients simultaneously accessing the same file.

2011-11-03 Nikita Borisov - UTUC

DFS Requirements (2)

Concurrent File Updates

One-copy update semantics: the file contents seen by all of the processes
accessing or updating a given file are those they would see if only a single copy of

the file existed.
Fault Tolerance

At most once invocation semantics.

At least once semantics. OK for a server protocol designed for idempotent
operations (i.e., duplicated requests do not result in invalid updates to files)

Security
Access Control list = per object, list of allowed users and access allowed to each

Capability list = per user, list of objects allowed to access and type of access
allowed (could be different for each (user,obj))

User Authentication: need to authenticate requesting clients so that access
control at the server is based on correct user identifiers.

Efficiency
Whole file v.s. block transfer

2011-11-03 Nikita Borisov - UTUC

VES interception

7

VFS provides “pluggable” file systems
Standard flow of remote access

User process calls read()
Kernel dispatches to VOP_READ() in some VFS
nfs_read()

check local cache
send RPC to remote NFS server
put process to sleep

2011-11-03 Nikita Borisov - UTUC 8

VFS interception

Standard flow of remote access (continued)
client kernel process manages call to server

retransmit if necessary
convert RPC response to file system buffer

store in local cache
wake up user process

back to nfs_read()
copy bytes to user memory

2011-11-03 Nikita Borisov - UTUC

NFS Assumptions, goals

Workgroup file system

Small number of clients

Very small number of servers
Single administrative domain

All machines agree on “set of users”
...which users are in which groups

Client machines run mostly-trusted OS
“User #37 says read(...)"

2011-11-03 Nikita Borisov - UTUC

10

NFS Assumptions, goals

2011-11-03

’

“Stateless” file server

Of course filesare “state” , but...

Server exports files without creating extra
state

No list of “who has this file open”

No “pending transactions” across crash

Result: crash recovery “fast” |, protocol
“simple”

Nikita Borisov - UTUC

11

NFS Assumptions, goals

’

“Stateless” file server
Of course files are “state” |, but...

Server exports files without creating extra state
No list of “who has this file open”
No “pending transactions” across crash

Result: crash recovery “fast” |, protocol

“simple”

Some inherently “stateful” operations
File locking
;Ilz;ggled by “separate service” “outside of

Slick trick, eh?

2011-11-03 Nikita Borisov - UTUC 12

AFS Assumptions, goals

Global distributed file system
Uncountable clients, servers
“One AFS” | like “one Internet”

Why would you want more than one?
Multiple administrative domains

username@cellname
bmm@andrew.cmu.edu
bmm@cs.cmu.edu

2011-11-03 Nikita Borisov - UTUC 13

AFS Assumptions, goals

Client machines are un-trusted

Must prove they act for a specific user
Secure RPC layer

Anonymous system:anyuser’
Client machines have disks (!!)

Can cache whole files over long periods
Write/write and write/read sharing are rare

Most files updated by one user
Most users on one machine at a time

2011-11-03 Nikita Borisov - UTUC

14

AFS Assumptions, goals

Support many clients
1000 machines could cache a single file
Some local, some (very) remote

2011-11-03 Nikita Borisov - UTUC 15

NFS Namespace

Constructed by client-side file system
mounts

mount serveri:/usr/local /usr/local
Group of clients can achieve common
namespace

Every machine can execute same mount
sequence at boot

If system administrators are diligent

2011-11-03 Nikita Borisov - UTUC

16

NFS Namespace

“Auto-mount” process based on
“mapS”

/home/dae means serveri:/home/dae
/home/owens means server2:/home/owens

2011-11-03 Nikita Borisov - UTUC 17

NFS Securit

Client machine presents credentials

user #, list of group #s — from Unix process
Server accepts or rejects credentials
“root squashing”

map uid o to uid -1 unless client on special machine list
Kernel process on server “adopts”

credentials
Sets user #, group vector based on RPC

Makes system call (e.g., read()) with those
credentials

2011-11-03 Nikita Borisov - UTUC 18

AFS Namespace

Assumed-global list of AFS cells
Everybody sees same files in each cell

Multiple servers inside cell invisible to user
Group of clients can achieve private
namespace

Use custom cell database

2011-11-03 Nikita Borisov - UTUC 19

AFS Security

Client machine presents Kerberos ticket

Allows arbitrary binding of (machine,user) to
(realm, principal)

bmm on a ¢cs.cmu.edu machine can be
bmm@andrew.cmu.edu

iff the password is known!
Server checks against access control list

2011-11-03 Nikita Borisov - UTUC 20

AFS ACLs

Apply to directory, not to individual files
ACL format

omm rlidwka
omm@cs.cmu.edu rl

omm:friends rl

Negative rights
Disallow “joerl” eventhough joeisin
bmm:friends

2011-11-03 Nikita Borisov - UTUC 21

AFS ACLs

AFS ACL semantics are not Unix semantics

Some parts obeyed in a vague way
Cache manager checks for files being executable, writable

Many differences

Inherent/good: can name people in different
administrative domains

“Just different”

ACLs are per-directory, not per-file
Different privileges: create, remove, lock

Not exactly Unix [/ not tied to Unix

2011-11-03 Nikita Borisov - UTUC 22

orotocol architecture

root@client executes mount-filesystem RPC
returns “file handle” for root of remote file
system
client RPC for each pathname component
[usr/local/lib/femacs/foo.el in [usr/local file system
h = lookup(root-handle, “lib”)

h = lookup(h, “emacs”)
h = lookup(h, “foo.el”)

Allows disagreement over pathname syntax
Look, Ma, no “/” !

2011-11-03 Nikita Borisov - UTUC 23

/O R
mu
loo

orotocol architecture

PCs are idempotent
tiple repetitions have same effect as one

13 b4
<up(h, “emacs”) generally returns same

result
read(fle-handle, offset, length) = bytes

write(file-handle, offset, buffer, bytes)
RPCs do not create server-memory state

no RPC calls for open()/close()

write() succeeds (to disk) or fails before RPC
completes

2011-11-03

Nikita Borisov - UIUC 24

NFS file handles

Goals
Reasonable size
Quickly map to file on server
“Capability”
Hard to forge, so possession servesas " proof”
Implementation (inode #, inode generation #)

inode # - small, fast for server to map onto data

“inode generation #° - must match value
stored in inode

“unguessably random” number chosen in create()

2011-11-03 Nikita Borisov - UTUC 25

NFS Directory Operations

Primary goal

Insulate clients from server directory format

Approach
readdir(dir-handle, cookie, nbytes) returns list

name, inode # (for display by Is -I), cookie

2011-11-03 Nikita Borisov - UTUC 26

Client Caching

A timestami-based method is used to validate
cached blocks before they are used.
Each data item in the cache is tagged with

Tc: the time when the cache entry was last validated.

Tm: the time when the block was last modified at the
server.

A cache entry at time T is valid if
(T-Tc < t) or (Tm client = Tm server).

t=freshness interval
Compromise between consistency and efficiency

Sun Solaris: t is set adaptively between 3-30 seconds for files,
30-60 seconds for directories

2011-11-03 Nikita Borisov - UTUC 27

Client Caching (Cont’d)

When a cache entry is read, a validity check is performed.

If the first half of validity condition (previous slide) is true, the the
second half need not be evaluated.

If the first half is not true, Tm ., is obtained (via getattr() to server)
and compared against Tm _; .,

When a cached page (not the whole file) is modified, it is
marked as dirty and scheduled to be flushed to the server.

Modified pages are flushed when the file is closed or a sync occurs at
the client.

Does not guarantee one-copy update semantics.

More details in textbook — please read up

2011-11-03 Nikita Borisov - UTUC 28

AFS protocol architecture

Volume = miniature file system
One user's files, project source tree, ...
Unit of disk quota administration, backup

Mount points are pointers to other volumes
Client machine has Cell-Server Database

[afs/fandrew.cmu.edu is a cell
protection server handles authentication

volume location server maps volumes to file
servers

2011-11-03 Nikita Borisov - UTUC 29

orotocol architecture

Volume location is dynamic

Moved between servers transparently to user
Volumes may have multiple replicas

Increase throughput, reliability

7

Restrictedto “read-only” volumes
fusr/local/bin

[afs/andrew.cmu.edu/usr

2011-11-03 Nikita Borisov - UTUC 30

AFS Callbacks

Observations

Client disks can cache files indefinitely
Even across reboots

Many files nearly read-only
Contacting server on each open() is wasteful

Server issues callback promise
If this file changes in 15 minutes, | will tell you
callback break message

15 minutes of free open(), read() for that client
More importantly, 15 minutes of peace for server

2011-11-03 Nikita Borisov - UTUC 31

AFS file identifiers

Volume number
Each file lives in a volume

Unlike NFS “serveri's fusro”
File number

inode # (as NFS)

“Uniquifier”

allows inodes to be re-used

Similar to NFS file handle inode generation #s

2011-11-03 Nikita Borisov - UTUC 32

AFS Directory Operations

Primary goal
Don't overload servers!

Approach
Server stores directory as hash table on disk
Client fetches whole directory as if a file
Client parses hash table
Directory maps name to fid

Client caches directory (indefinitely, across
reboots)
Server load reduced

2011-11-03 Nikita Borisov - UTUC 33

AFS access pattern

open(“/afs/cs.cmu.edu/service/systypes”)

VFS layer hands off “/afs” to AFS client
module

ient maps cs.cmu.edu to pt & vidb servers
ient authenticates to pt server

ient volume-locates root.cell volume

ient fetches “/” directory

7

ient fetches “service” directory

A O O O O N

ient fetches “systypes” file

2011-11-03 Nikita Borisov - UTUC

34

AFS access pattern

open(“/afs/cs.cmu.edu/service/newCSDB”)

VFS layer hands off “/afs” to AFS client
module

Client fetches “newCSDB” file
open(“/afs/cs.cmu.edu/service/systypes”)

Assume
File is in cache
Server hasn't broken callback
Callback hasn't expired

Client can read file with no server interaction

2011-11-03 Nikita Borisov - UTUC

35

AFS access pattern

Data transfer is by chunks
Minimally 64 KB
May be whole-file

Writeback cache
Opposite of NFS
Store chunk back to server

When cache overflows

11

. . 7
every write is sacred

On last user close()

2011-11-03 Nikita Borisov - UTUC 36

AFS access pattern

Is writeback crazy?
Write conflicts “assumed rare”
Who needs to see a half-written file?

2011-11-03 Nikita Borisov - UTUC 37

NFS ‘-,

Locking

Inherently stateful

lock must persist across client calls
lock(), read(), write(), unlock()

“Separate service”

Handled by same server
Horrible things happen on server crash
Horrible things happen on client crash

2011-11-03 Nikita Borisov - UTUC 38

NFS ‘-,

Some operations not really idempotent

13

unlink(file) returns “ok” once, then “no
such file”

server caches “afew’ client requests
Cacheing

No real consistency guarantees

Clients typically cache attributes, data “for a

while”

No way to know when they're wrong

39

2011-11-03 Nikita Borisov - UTUC

NFS ‘-,

Large NFS installations are brittle
Everybody must agree on many mount points

Hard to load-balance files among servers
No volumes
No atomic moves

Cross-realm NFS access basically
nonexistent

No good way to map uid#47 from an unknown
host

2011-11-03 Nikita Borisov - UTUC 40

AFS “rouc

Locking
Server refuses to keep a waiting-client list
Client cache manager refuses to poll server
User program must invent polling strategy

Chunk-based I/O

No real consistency guarantees
close() failures surprising

2011-11-03 Nikita Borisov - UTUC 41

AFS “roug

ACLs apply to directories

“Makes sense” if files will inherit from
directories

Not always true

Confuses users
Directories inherit ACLs

Easy to expose a whole tree accidentally

What else to do?

No good solution known
DFS horror

2011-11-03 Nikita Borisov - UTUC 42

AFS “roug

Small AFS installations are punitive

Step 1: Install Kerberos
2-3 Servers
Inside locked boxes!

Step 2: Install ~4 AFS servers (2 data, 2 pt/vidb)

Step 3: Explain Kerberos to your users
Ticket expiration!

Step 4: Explain ACLs to your users

2011-11-03 Nikita Borisov - UTUC 43

Workgroup network file service
Any Unix machine can be a server (easily)
Machines can be both client & server

My files on my disk, your files on your disk

Everybody in group can access all files
Serious trust, scaling problems

“Stateless file server” model only partial
SUCCessS

2011-11-03 Nikita Borisov - UTUC 44

Worldwide file system
Good security, scaling
Global namespace
11 . 77 .
Professional™ server infrastructure per cell

Don't try this at home

Only ~190 AFS cells (2005-11, also 2003-02)
8 are cmu.edu, ~15 are in Pittsburgh
“No write conflict” model only partial

SUCCESS

2011-11-03 Nikita Borisov - UTUC 45

Further Reading

NFS
RFC 1094 for v2 (3/1989)
RFC 1813 for v3 (6/2995)

RFC 3530 for v4 (4/2003)

2011-11-03 Nikita Borisov - UTUC 46

Further Reading

AFS

2011-11-03

“The ITC Distributed File System: Principles
and Design” , Proceedings of the 10th ACM
Symposium on Operating System Principles,
Dec. 1985, pp. 35-50.

“Scale and Performance in a Distributed File

System” , ACM Transactions on Computer
Systems, Vol. 6, No. 1, Feb. 1988, pp. 51-81.

IBM AFS User Guide, version 36
http://www.cs.cmu.edu/~help/afs/index.html

Nikita Borisov - UIUC 47

