CS425/CSE424/ECE428 — Distributed Systems

Distributed Shared Memory

Some material derived from slides by I. Gupta, M. Hara
J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya

2011-10-27 Nikita Borisov - UIUC

The Basic Model of DSM

Shared Address Space

2

Page Transfer

Read-only replicated page

Shared Memory vs. Message

Passing

In @ multiprocessor, two or more processors share a common main
memory. Any process on a processor can read/write any word in
the shared memory. All communication through a bus.

E.g., Cray supercomputer

Called Shared Memory
In @ multicomputer, each processor has its own private memory.
All communication using a network.

E.g., CSIL PC cluster

Easier to build: One can take a large number of single-board
computers, each containing a processor, memory, and a network
interface, and connect them together. (called COTS="Components off

the shelf")

Uses Message passing
Message passing can be implemented over shared memory.
Shared memory can be implemented over message passing.
Let's look at shared memory by itself.

Bus-Based Multiprocessors with

Shared Memory

When any of the CPUs wants to read a word from the memory, it puts the
address of the requested word on the address line, and asserts the bus
control (read) line.

To prevent two CPUs from accessing the memory at the same time, a bus
arbitration mechanism is used, i.e., if the control line is already asserted,
wait.

To improve performance, each CPU can be equipped with a snooping
cache.

Snooping used in both (a) write-through and (b) write-once models

Cache Consistency — Write Through

Event Action taken by a cache in | Action taken by
response to its own other caches in
operation response (to a
remote operation)
Read hit Fetch data from local (no action)
cache
Read miss Fetch data from memory (no action)

and store in cache

Write miss Update data in memory Invalidate cache
and store in cache / entry
Write hit Update memory and caghe | Invalidate cache
entry
i Y

~ >

Cache Consistency — Write Once

Initially both the memory and B have
an updated entry of word W.

A writes a value W2. B snoops on the bus,
and invalidates its entry. A's copy is marked
as private.

A reads word W and gets W1. B does not
respond but the memory does.

A writes W again. This and subsequent
writes by A are done locally, without any
bus traffic.

Cache Consistency — Write Once

C reads W. A sees the request by

snooping on the bus, asserts a signal that
inhibits memory from responding, provides the
values. Also changes label to Shared.

C writes W. A invalidates it own entry.
C now has the only valid copy.

Distributed Shared Memory (DSM)

: Create the illusion of global shared
address space

Divide address space into (pages)
Distribute page storage across computers

Use the mechanism to migrate chunk
to local memory

Similar to virtual memory, but missing pages
filled from other computers instead of disk

Distributed Shared Memory

Granularity of Chunks

When a processor references a word that is absent, it
causes a page fault.
On a page fault,

the missing page is just brought in from a remote processor.

A region of 2, 4, or 8 pages including the missing page may also
be broughtin.

Locality of reference: if a processor has referenced one word on a page,
it is likely to reference other neighboring words in the near future.

Region size
Small => too many page transfers
Large => False sharing
Above tradeoff also applies to page size

False Sharing

Processor 1 Processor 2
/\ R
B —
| |l —] Two
unrelated
shared
variables

Code using A Code using B

Achieving Sequential Consistency

Achieving consistency is not an issue if
Pages are not replicated, or..

Only read-only pages are repllcated
But don't want to compromise performance.
Two approaches are taken in DSM

: the write is allowed to take place locally, but the
address of the modified word and its new value are broadcast to
all the other processors. Each processor holding the word
copies the new value, i.e., updates its local value.

: The address of the modified word is broadcast, but
the new value is not. Other processors invalidate their copies.
(Similar to example in first few slides for multiprocessor)

Page-based DSM systems typically use an invalidate protocol
instead of an update protocol. ? [Why?]

Invalidation Protocol to Achieve

Each page is either in R or \\V state.

When a pageis in \/V state, only one copy exists, located at one
processor (called current "owner") in read-write mode.

When a page is in R state, the current/latest owner has a copy
(mapped read-only), but other processors may have copies.

Processor 1 Processor 2 Processor 1 Processor 2

O L7 O L
K

Invalidation Protocol: Read

Processor 1 Processor 2

Y
Q W

Invalidation Protocol: Read

Processor 1 Processor 2

Q R

Invalidation Protocol: Read

Processor 1 Processor 2

Q R R

Invalidation Protocol: Read

Processor 1 Processor 2

Q R R

Invalidation Protocol: Read

Processor 1 Processor 2

Q R R

Invalidation Protocol: Read

Processor 1 Processor 2

Q R A

Invalidation Protocol: Write

Processor 1 Processor 2

Q W

Invalidation Protocol: Write

Processor 1 Processor 2

Q W

Invalidation Protocol: Write

Processor 1 Processor 2

O L :

Invalidation Protocol: Write

Processor 1 Processor 2

O L :

Invalidation Protocol: Write

Processor 1 Processor 2

O L :

Invalidation Protocol: Write

Processor 1 Processor 2

O L -

Finding the Owner

Owner is the processor with latest updated copy. How do you locate it?
1. Do a broadcast, asking for the owner to respond.
Broadcast interrupts each processor, forcing it to inspect the request packet.

An optimization is to include in the message whether the sender wants to read/write and
whether it needs a copy.
2. Designate a page manager to keep track of who owns which page.
A page manager uses incoming requests not only to provide replies but also to keep track of
changes in ownership.
Potential performance bottleneck = multiple page managers
The lower-order bits of a page number are used as an index into a table of page managers.

s / N
2AHeply A

Y

A

A

How does the Owner Find the

Copies to Invalidate

Broadcast a msqg giving the page num. and asking processors holding the
page to invalidate it.
Works only if broadcast messages are reliable and can never be lost. Also
expensive.
The owner (or page manager) for a page maintains a copyset list giving
processors currently holding the page.
When a page must be invalidated, the owner (or page manager) sends a

message to each processor holding the page and waits for an
acknowledgement.

/1

Strict and Sequential Consistency

Different types of consistency: a tradeoff between accuracy and
performance.
Strict Consistency (one-copy semantics)
Any read to a memory location x returns the value stored by the most
recent write operation to x.
When memory is strictly consistent, all writes are instantaneously
visible to all processes and a total order is achieved.
Similar to "Linearizability"
Sequential Consistency
For any execution, a sequential order can be found for all ops in the
execution so that
The sequential order is consistent with individual program orders
(FIFO at each processor)

Any read to a memory location x should have returned (in the actual
execution) the value stored by the most recent write operation to x in
this sequential order.

Sequential Consistency

In this model, writes must occur in the same
order on all copies, reads however can be
interleaved on each system, as convenient.
Stale reads can occur.

Can be realized in a system with causal-
totally ordered reliable broadcast
mechanism.

How to Determine the Sequential

Example: Given Hi=W(x)1 and H2= R(x)o
R(x)1, how do we come up with a sequential
order (single string S of ops) that satisfies seq.

cons.
Program order must be maintained

Memory coherence must be respected: aread to
some |location, x must always return the value
most recently written to x.

Answer: S= R(x)o W(x)1 R(x)1

Causal Consistency

Writes that are potentially causally related must be seen
by all processes in the same order. Concurrent writes may
be seen in a different order on different machines.

Example 1:

Causal Consistency

— 7

DSM vs. Message Passing

Advantages
Simple programming model
No marshalling
Disadvantages
Higher overhead due to false sharing
Does not handle failures well

Difficult with heterogeneous systems

Summary

DSM: usually implemented in multicomputer
where there is no global memory
Invalidate versus Update protocols
Consistency models — tradeoff between accuracy
and performance

strict, sequential, causal, etc.
Some of the material is from Tanenbaum (on
reserve at library), but slides ought to be
enough.

Reading from Coulouris textbook: Chap 18 (4 ed;

relevant parts —topics covered in the slides), 6.5.1 (5t
ed)

