
Computer Science 425
Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2011

Gossiping
Reading: Section 15.4 / 18.4!

© 2011, N. Borisov, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

CAP Theorem

Consistency! Availability!

Partition Resistance!

Can’t have all 3!

View-synchronous updates

Quora Eventual Consistency

BASE
• Counterpart to ACID

– Basically Available
– Soft-state
– Eventually Consistent

• Eventual consistency: After a long enough
period of no updates, all replicas will have the
same view

• Optional properties
– Causal consistency
– Eventual agreement even with constant updates, failures,

etc.

Conflict Resolution
•  Concurrent updates during partitions will cause conflicts
E.g., scheduling a meeting under the same time
E.g., concurrent modifications of same file

•  Conflicts must be resolved, either automatically or manually
E.g., file merge
E.g., priorities
E.g., kick it back to human

•  System must decide: what kind of conflicts are OK & how to
minimize them

Passive (Primary-Backup) Replication

v Request Communication: the request is issued to the

primary RM and carries a unique request id.

v Coordination: Primary takes requests atomically, in order,
checks id (resends response if not new id.)

v Execution: Primary executes & stores the response
v Agreement: If update, primary sends updated state/result,

req-id and response to all backup RMs (1-phase commit
enough).

v Response: primary sends result to the front end

Client! Front End!
RM!

RM!

RM!
Client! Front End! RM!

primary!

Backup!

Backup!
Backup!

….!

?!

Active Replication

v Request Communication: The request contains a unique identifier
and is multicast to all by a reliable totally-ordered multicast.

v Coordination: Group communication ensures that requests are
delivered to each RM in the same order (but may be at different
physical times!).

v Execution: Each replica executes the request. (Correct replicas
return same result since they are running the same program, i.e.,
they are replicated protocols or replicated state machines)

v Agreement: No agreement phase is needed, because of multicast
delivery semantics of requests

v Response: Each replica sends response directly to FE

Client! Front End! RM!

RM!

Client! Front End! RM!

….!

?!

Eager versus Lazy

•  Eager replication, e.g., B-multicast, R-multicast, etc.
(previously in the course)

–  Multicast request to all RMs immediately in active replication
–  Multicast results to all RMs immediately in passive replication

•  Alternative: Lazy replication
–  Allow replicas to converge eventually and lazily
–  Propagate updates and queries lazily, e.g., when network bandwidth

available
–  FEs need to wait for reply from only one RM
–  Allow other RMs to be disconnected/unavailable
–  May provide weaker consistency than sequential consistency, but

improves performance

•  Lazy replication can be provided by using the gossiping

Multicast

Distributed
Group of
 “Nodes”=
Processes
at Internet-
based hosts

Node with a piece of information
to be communicated to everyone

Fault-tolerance and Scalability

Multicast sender

Multicast Protocol

n  Nodes may crash
n  Packets may
 be dropped
n  Possibly
1000’s of nodes

X

X

Centralized (B-multicast)

UDP/TCP packets

n  Simplest
 implementation

n  Problems?

R-multicast

UDP/TCP packets

n  Simpler
 implementation

n  Overhead is
quadratic in N

+ Every node B-multicasts the message!

Tree-Based

UDP/TCP packets

n  e.g., IPmulticast, SRM
 RMTP, TRAM,TMTP
n  Tree setup
 and maintenance

n  Problems?

A Third Approach

Multicast sender

Gossip messages (UDP)

Periodically, transmit to
b random targets

Other nodes do same
after receiving multicast Gossip messages (UDP)

“Epidemic” Multicast (or “Gossip”)

 Protocol rounds (local clock)
 b random targets per round

 Uninfected

 Infected

Gossip Message (UDP)

Properties

Claim that this simple protocol
•  Is lightweight in large groups
•  Spreads a multicast quickly
•  Is highly fault-tolerant

Analysis

From old mathematical branch of Epidemiology [Bailey 75]
•  Population of (n+1) individuals mixing homogeneously
•  Contact rate between any individual pair is
•  At any time, each individual is either uninfected (numbering

x) or infected (numbering y)
•  Then,

 and at all times

•  Infected–uninfected contact turns latter infected

β

1, 00 == ynx

1+=+ nyx

Analysis (contd.)

•  Continuous time process
•  Then

 (why?)

 with solution

 (what do these become when t very large?)

xy
dt
dx

β−=

tntn ne
ny

en
nnx)1()1(1

)1(,)1(
+−+ +

+
=

+

+
= ββ

Epidemic Multicast

 Protocol rounds (local clock)
 b random targets per round

 Uninfected

 Infected

Gossip Message (UDP)

Epidemic Multicast Analysis

 (why?)

 Substituting, at time t=clog(n), num. infected is

n
b

=β

2

1)1(
−

−+≈ cbn
ny

Analysis (contd.)

•  Set c,b to be small numbers independent of n
–  E.g., c=2; b=2;

•  Within clog(n) rounds, [low latency]
–  all but of nodes receive the multicast

 [reliability]

–  each node has transmitted no more than cblog(n) gossip
messages [lightweight]

2

1
−cbn

Fault-tolerance

•  Packet loss
–  50% packet loss: analyze with b replaced with b/2
–  To achieve same reliability as 0% packet loss, takes twice as

many rounds
–  Work it out!

•  Node failure
–  50% of nodes fail: analyze with n replaced with n/2 and b

replaced with b/2
–  Same as above
–  Work it out!

Fault-tolerance

•  With failures, is it possible that the epidemic might die out
quickly?

•  Possible, but improbable:
–  Once a few nodes are infected, with high probability, the epidemic will not

die out
–  So the analysis we saw in the previous slides is actually behavior with

high probability
[Galey and Dani 98]

•  Think: why do rumors spread so fast? why do infectious
diseases cascade quickly into epidemics? why does a worm
like Blaster spread rapidly?

So,…

•  Is this all theory and a bunch of equations?
•  Or are there implementations yet?

Some implementations

•  Amazon Web Services EC2/S3 (rumored)
•  Clearinghouse project: email and database

transactions [PODC ‘87]
•  refDBMS system [Usenix ‘94]
•  Bimodal Multicast [ACM TOCS ‘99]
•  Ad-hoc networks [Li Li et al, Infocom ‘02]
•  Delay-Tolerant Networks [Y. Li et al ‘09]
•  Usenet NNTP (Network News Transport

Protocol) ! [‘79]

NNTP Inter-server Protocol

Server retains news posts for a while,
 transmits them lazily, deletes them after a while

1.  Each client uploads and downloads news posts
 from a news server

2.

Gossiping + Replicated Objects
 for Transactions

Passive (Primary-Backup) Replication

v Request Communication: the request is issued to the

primary RM and carries a unique request id.

v Coordination: Primary takes requests atomically, in order,
checks id (resends response if not new id.)

v Execution: Primary executes & stores the response
v Agreement: If update, primary sends updated state/result,

req-id and response to all backup RMs (1-phase commit
enough).

v Response: primary sends result to the front end

Client! Front End!
RM!

RM!

RM!
Client! Front End! RM!

primary!

Backup!

Backup!
Backup!

….!

?!

Active Replication

v Request Communication: The request contains a unique identifier
and is multicast to all by a reliable totally-ordered multicast.

v Coordination: Group communication ensures that requests are
delivered to each RM in the same order (but may be at different
physical times!).

v Execution: Each replica executes the request. (Correct replicas
return same result since they are running the same program, i.e.,
they are replicated protocols or replicated state machines)

v Agreement: No agreement phase is needed, because of multicast
delivery semantics of requests

v Response: Each replica sends response directly to FE

Client! Front End! RM!

RM!

Client! Front End! RM!

….!

?!

Gossip messages (UDP)

Periodically, transmit to
b random targets

Gossiping Architecture

•  The RMs exchange “gossip” messages
 (1) periodically and (2) amongst each other. Gossip

messages convey updates they have each received from
clients, and serve to achieve anti-entropy (convergence of
all RMs).

•  Objective: provisioning of highly available service.
Guarantee:

–  Each client obtains a consistent service over time: in response to a
query, an RM may have to wait until it receives “required” updates
from other RMs. The RM then provides client with data that at least
reflects the updates that the client has observed so far.

–  Relaxed consistency among replicas: RMs may be inconsistent at any
given point of time. Yet all RMs eventually receive all updates and they
apply updates with ordering guarantees. Can be used to provide
sequential consistency.

•  How to provide this?

Query and Update Operations in a Gossip
Service

Query	
 Val	

FE	

RM	
 RM	

RM	

Query, 	
prev	
 Val, 	
new	

Update	

FE	

Update, 	
prev	
 Update id	

Service	

Clients	

gossip	

Various Timestamps

•  Virtual timestamps are used to control the order of
operation processing. The timestamp contains an entry for
each RM (i.e., it is a vector timestamp).

•  Each front end keeps a vector timestamp, prev, that reflects
the latest data values accessed by that front end. The FE
sends this along with every request it sends to any RM.

•  Replies to FE:
–  When an RM returns a value as a result of a query operation, it

supplies a new timestamp, new.
–  An update operation returns a timestamp, update id.

•  Each returned timestamp is merged with the FE’s previous
timestamp to record the data that has been observed by the
client.

–  Merging is a pairwise max operation applied to each element i (from 1 to N)

Front ends Propagate Their Timestamps

FE	

Clients	

FE	

Service	

Vector	

timestamps	

RM	
 RM	

RM	

gossip	

Since client-to-client communication!
can also lead to causal relationships!
between operations applied to !
services, the FE piggybacks its!
timestamp on messages to other!
clients.!

Expanded on !
next slide…!

A Gossip Replica Manager

Replica timestamp	
 	

Update log	

Value	
 	
timestamp	

Value	

Executed operation table	

Stable	

updates	

Updates	

Gossip	

messages	

FE	

Replica	

timestamp	
 Replica log	

OperationID	
Update 	
 	
Prev	

FE	

Replica manager	

Other replica 	
managers	

Timestamp table	

•  Value: value of the object maintained by the RM.
•  Value timestamp: the timestamp that represents the updates

reflected in the value. Updated whenever an update
operation is applied.

Replica timestamp	
 	

Update log	

Value	
 	
timestamp	

Value	

Executed operation table	

Stable	

updates	

Updates	

Gossip	

messages	

FE	

Replica	

timestamp	
 Replica log	

OperationID	
Update 	
 	
Prev	

FE	

Replica manager	

Other replica 	
managers	

Timestamp table	

•  Update log: records all update operations as soon as they are
received, until they are reflected in Value.

–  Keeps all the updates that are not stable, where a stable update is one that has
been received by all other RMs and can be applied consistently with its ordering
guarantees.

–  Keeps stable updates that have been applied, but cannot be purged yet, because
no confirmation has been received from all other RMs.

•  Replica timestamp: represents updates that have been accepted
by the RM into the log.

Replica timestamp	
 	

Update log	

Value	
 	
timestamp	

Value	

Executed operation table	

Stable	

updates	

Updates	

Gossip	

messages	

FE	

Replica	

timestamp	
 Replica log	

OperationID	
Update 	
 	
Prev	

FE	

Replica manager	

Other replica 	
managers	

Timestamp table	

•  Executed operation table: contains the FE-supplied ids of
updates (stable ones) that have been applied to the value.

–  Used to prevent an update being applied twice, as an update may
arrive from a FE and in gossip messages from other RMs.

•  Timestamp table: contains, for each other RM, the latest
timestamp that has arrived in a gossip message from that
other RM.

Replica timestamp	
 	

Update log	

Value	
 	
timestamp	

Value	

Executed operation table	

Stable	

updates	

Updates	

Gossip	

messages	

FE	

Replica	

timestamp	
 Replica log	

OperationID	
Update 	
 	
Prev	

FE	

Replica manager	

Other replica 	
managers	

Timestamp table	

•  The ith element of a vector timestamp held by RMi
corresponds to the total number of updates received from
FEs by RMi

•  The jth element of a vector timestamp held by RMi (j not
equal to i) equals the number of updates received by RMj
that have been forwarded to RMi in gossip messages.

Replica timestamp	
 	

Update log	

Value	
 	
timestamp	

Value	

Executed operation table	

Stable	

updates	

Updates	

Gossip	

messages	

FE	

Replica	

timestamp	
 Replica log	

OperationID	
Update 	
 	
Prev	

FE	

Replica manager	

Other replica 	
managers	

Timestamp table	

Update Operations

•  Each update request u contains
–  The update operation, u.op
–  The FE’s timestamp, u.prev
–  A unique id that the FE generates, u.id.

•  Upon receipt of an update request, the RM i
–  Checks if u has been processed by looking up u.id in the

executed operation table and in the update log.
–  If not, increments the i-th element in the replica timestamp by 1

to keep track of the number of updates directly received from
FEs.

–  Places a record for the update in the RM’s log.
 logRecord := <i, ts, u.op, u.prev, u.id>
 where ts is derived from u.prev by replacing u.prev’s ith

element by the ith element of its replica timestamp.
–  Returns ts back to the FE, which merges it with its timestamp.

Update Operation (Cont’d)

•  The stability condition for an update u is
 u.prev <= valueTS
 i.e., All the updates on which this update depends

have already been applied to the value.
•  When the update operation u becomes stable, the

RM does the following
–  value := apply(value, u.op)
–  valueTS := merge(valueTS, ts) (update the value timestamp)
–  executed := executed U {u.id} (update the executed operation

table)

Exchange of Gossiping Messages

•  A gossip message m consists of the log of the
RM, m.log, and the replica timestamp, m.ts.

–  Replica timestamp contains info about non-stable updates
•  An RM that receives a gossip message m has

three tasks:
–  (1) Merge the arriving log with its own.

»  Let replicaTS denote the recipient RM’s replica timestamp.
A record r in m.log is added to the recipient’s log unless
r.ts <= replicaTS.

»  replicaTS merge(replicaTS, m.ts)
–  (2) Apply any updates that have become stable but not been

executed (stable updates in the arrived log may cause some
pending updates to become stable)

–  (3) Garbage collect: Eliminate records from the log and the
executed operation table when it is known that the updates
have been applied everywhere.

Query Operations

•  A query request q contains the operation, q.op, and the
timestamp, q.prev, sent by the FE.

•  Let valueTS denote the RM’s value timestamp, then q can
be applied if

 q.prev <= valueTS
•  The RM keeps q on a hold back queue until the condition is

fulfilled.
–  If valueTs is (2,5,5) and q.prev is (2,4,6), then one update from RM3 is

missing.
•  Once the query is applied, the RM returns
 new valueTS
 to the FE (along with the value), and the FE merges new with

its timestamp.

Selecting Gossip Partners
•  The frequency with which RMs send gossip messages

depends on the application.
•  Policy for choosing a partner to exchange gossip with:

–  Random policies: choose a partner randomly (perhaps with weighted
probabilities)

–  Deterministic policies: a RM can examine its timestamp table and
choose the RM that is the furthest behind in the updates it has
received.

–  Topological policies: arrange the RMs into an overlay graph. Choose
graph edges based on small round-trip times (RTTs), or a ring or
Chord.

»  Each has its own merits and drawbacks. The ring topology
produces relatively little communication but is subject to high
transmission latencies since gossip has to traverse several RMs.

•  Example: Network News Transport Protocol (NNTP) uses
gossip communication. Your updates to class.cs425 are
spread among News servers using the gossip protocol!

•  Gives probabilistically reliable and fast dissemination of
data with very low background bandwidth

–  Analogous to the spread of gossip in society.

More Examples

•  Bayou
–  Replicated database with weaker guarantees than sequential

consistency
–  Uses gossip, timestamps and concept of anti-entropy
–  Section 15.4.2 / 18.4.2

•  Coda
–  Provides high availability in spite of disconnected operation,

e.g., roving and transiently-disconnected laptops
–  Based on AFS
–  Aims to provide Constant data availability
–  Section 15.4.3 / 18.4.3

