
Distributed Transactions

CS425 /CSE424/ECE428 – Distributed
Systems – Fall 2011

Nikita Borisov - UIUC

Material derived from slides by I. Gupta, M. Harandi, !
J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya!

1

Distributed Transactions

v  A transaction that invokes operations
at several servers.

T!

A

Y

Z

B

C

D!

T!

T1!

T2!

T11!

T12!

T21!

T22!

A

B!

C

D!

F!

H

K

Flat Distributed Transaction! Nested Distributed Transaction!

X

Nikita Borisov - UIUC 2

Coordination in Distributed Transactions
Each server has a special participant process. Coordinator process

(leader) resides in one of the servers, talks to trans. & participants.

T!

A

Y

Z

B

C

D!

X

join!

join!

join!

Coordinator! Participant!

Participant!

Participant!

T!

Coordinator!Open
Transacton!

TID!

Close
Transaction!
Abort
Transaction!

Participant!A

a.method (TID)!
1!

2!

Join (TID, ref)!
3!

Coordinator & Participants! The Coordination Process!

Nikita Borisov - UIUC 3

Distributed banking transaction

.	
.	

BranchZ	

BranchX	

participant	

participant	

C	

D	

Client	

BranchY	

B	

A	

participant	
 join	

 join	

 join	

T	

 a.withdraw(4);	

 c.deposit(4);	

 b.withdraw(3);	

 d.deposit(3);	

openTransaction	

 b.withdraw(T, 3);	

closeTransaction

T = 	
openTransaction	

 a.withdraw(4);	

 c.deposit(4);	

 b.withdraw(3);	

 d.deposit(3);	

 closeTransaction	

 Note: the coordinator is in one of the servers, e.g. BranchX	

Nikita Borisov - UIUC 4

♣  Each server is responsible for applying
concurrency control to objects it stores.

♣  Servers are collectively responsible for
serial equivalence of operations.

♣ Locks are held locally, and cannot be
released until all servers involved in a
transaction have committed or aborted.

♣  Locks are retained during 2PC protocol.
♣  Since lock managers work independently,

deadlocks are (very?) likely.

I. Locks in Distributed Transactions

Nikita Borisov - UIUC 5

♣  The wait-for graph in a distributed set of
transactions is held partially by each server

♣  To find cycles in a distributed wait-for graph, one
option is to use a central coordinator:
♣  Each server reports updates of its wait-for graph
♣ The coordinator constructs a global graph and checks for

cycles

♣  Centralized deadlock detection suffers from usual
comm. overhead + bottleneck problems.

♣  In edge chasing, servers collectively make the
global wait-for graph and detect deadlocks :
♣  Servers forward “probe” messages to servers in the edges of

wait-for graph, pushing the graph forward, until cycle is found.

Distributed Deadlocks

Nikita Borisov - UIUC 6

Probes Transmitted to Detect Deadlock

V	

Held by	

W	

Waits for	
Held by	

Waits	

for	

Waits for	

Deadlock	

detected	

U	

C	

A	

B	

Initiation	

W	
→	
 U 	
→	
 V 	
→	
 W	

W	
→	
 U	

W	
→	
 U 	
→	
 V	

Z	

Y	

X	

Nikita Borisov - UIUC 7

Edge Chasing
•  Initiation: When a server S1 notices that a

transaction T starts waiting for another
transaction U, where U is waiting to access an
object at another server S2, it initiates detection
by sending <TU> to S2.

•  Detection: Servers receive probes and decide
whether deadlock has occurred and whether to
forward the probes.

•  Resolution: When a cycle is detected, one or more
transactions in the cycle is/are aborted to break
the deadlock.

•  Phantom deadlocks=false detection of deadlocks
that don’t actually exist

–  Edge chasing messages contain stale data (Edges may have
disappeared in the meantime). So, all edges in a “detected”
cycle may not have been present in the system all at the same
time.

Nikita Borisov - UIUC 8

Reverse Edge Chasing

T! U!

Wait for!Held by!

Held by!Wait for!

B!

V!
Held by!Wait for!

A! C!

X!

Y!

Z!

X: U à V!
Y: T à U!
Z: V à T!

LOCAL
Wait-for
GRAPHS!

T! U!

Wait for!Held by!

Held by!Wait for!
B!

V!
Held by!Wait for!

A! C!

X!

Y!

Z!

X: U à V!

Y: T à U à V!

Z: Tà U àV à T deadlock
detected!

Nikita Borisov - UIUC 9

Transaction Priority

•  In order to ensure that only one transaction in a cycle is
aborted, transactions are given priorities (e.g., inverse of
timestamps) in such a way that all transactions are totally
ordered.

•  When a deadlock cycle is found, the transaction with the
lowest priority is aborted. Even if several different servers
detect the same cycle, only one transaction aborts.

•  Transaction priorities can be used to limit probe messages
to be sent only to lower prio. trans. and initiating probes
only when higher prio. trans. waits for a lower prio. trans.

–  Caveat: suppose edges were created in order 3->1, (then after a while)
1->2, 2->3. Deadlock never detected.

–  Fix: whenever an edge is created, tell everyone (broadcast) about this
edge. May be inefficient.

Nikita Borisov - UIUC 10

Deadlock Prevention

•  Give objects unique integer identifiers

•  Restrict transactions to acquire locks only in
increasing order of object ids

•  Prevents deadlock – why?
–  Which of the necessary conditions for deadlock does it

violate?
»  Exclusive Locks
»  No preemption
»  Circular Wait

Nikita Borisov - UIUC 11

v  Atomicity principle requires that either all the
distributed operations of a transaction complete, or
all abort.

v At some stage, client executes closeTransaction().
Now, atomicity requires that either all participants
(remember these are on the server side) and the
coordinator commit or all abort.

v What problem statement is this?

II. Atomic Commit Problem

Nikita Borisov - UIUC 12

Atomic Commit Protocols
v Consensus, but it’s impossible in asynchronous networks!
v So, need to ensure safety property in real-life implementation.

Never have some agreeing to commit, and others agreeing to
abort. Err on the side of safety.

v  First cut: one-phase commit protocol. The coordinator
communicates either commit or abort, to all participants until all
acknowledge.
v Doesn’t work when a participant crashes before receiving this

message (partial transaction results are lost).
v Does not allow participant to abort the transaction, e.g., under

deadlock.

v  Alternative: Two-phase commit protocol
v First phase involves coordinator collecting a vote (commit or abort) from

each participant (which stores partial results in permanent storage before
voting).

v If all participants want to commit and no one has crashed, coordinator
multicasts commit message

v If any participant has crashed or aborted, coordinator multicasts abort
message to all participants Nikita Borisov - UIUC 13

RPCs for Two-Phase Commit Protocol

canCommit?(trans)-> Yes / No	

Call from coordinator to participant to ask whether it can commit a
transaction. Participant replies with its vote.	

doCommit(trans) 	

Call from coordinator to participant to tell participant to commit its part of a
transaction.	

doAbort(trans) 	

Call from coordinator to participant to tell participant to abort its part of a
transaction.	

haveCommitted(trans, participant) 	

Call from participant to coordinator to confirm that it has committed the
transaction. (May not be required if getDecision() is used – see below)	

getDecision(trans) -> Yes / No	

Call from participant to coordinator to ask for the decision on a transaction
after it has voted Yes but has still had no reply after some delay. Used to
recover from server crash or delayed messages.	

Nikita Borisov - UIUC 14

The two-phase commit protocol
Phase 1 (voting phase): 	

1. 	
The coordinator sends a canCommit? request to each of the participants in
the transaction.	

2. 	
When a participant receives a canCommit? request it replies with its vote
(Yes or No) to the coordinator. Before voting Yes, it prepares to commit by
saving objects in permanent storage. If its vote is No, the participant aborts
immediately.	

Phase 2 (completion according to outcome of vote):	

3. 	
The coordinator collects the votes (including its own). 	

(a) 	
If there are no failures and all the votes are Yes, the coordinator
decides to commit the transaction and sends a doCommit request
to each of the participants. 	

(b) 	
Otherwise the coordinator decides to abort the transaction and
sends doAbort requests to all participants that voted Yes. This is
the step erring on the side of safety.	

4. Participants that voted Yes are waiting for a doCommit or doAbort request
from the coordinator. When a participant receives one of these messages it
acts accordingly and in the case of commit, makes a haveCommitted call as
confirmation to the coordinator.	

Recall that !
server may!
crash!

Nikita Borisov - UIUC 15

Communication in Two-Phase Commit

canCommit?	

Yes	

doCommit	

haveCommitted	

Coordinator	

1	

3	

(waiting for votes)	

committed	

done	

prepared to commit	

step	

Participant	

2	

4	

(uncertain)	

prepared to commit	

committed	

status	
step	
status	

v  To deal with server crashes
v Each participant saves tentative updates into permanent storage, right before

replying yes/no in first phase. Retrievable after crash recovery.
v  To deal with canCommit? loss

v The participant may decide to abort unilaterally after a timeout (coordinator will
eventually abort)

v  To deal with Yes/No loss, the coordinator aborts the transaction after a timeout
(pessimistic!). It must annouce doAbort to those who sent in their votes.

v  To deal with doCommit loss
v The participant may wait for a timeout, send a getDecision request (retries until

reply received) – cannot abort after having voted Yes but before receiving
doCommit/doAbort!

Nikita Borisov - UIUC 16

Two Phase Commit (2PC) Protocol
Coordinator! Participant!

 Execute!
•  Precommit!

Uncertain!
• Send request to
each participant!
•  Wait for replies
(time out possible) !

 Commit!
• Send COMMIT to
each participant!

 Abort!
• Send ABORT to
each participant!

 Execute!

•  Precommit!
•  send YES to
coordinator!
•  Wait for
decision!

 Abort!
• Send NO to
coordinator!

NO!
YES!

request!

not
ready! ready!

All
YES!

Timeout
or a NO!

 Commit!
•  Make
transaction
visible!

 Abort!

COMMIT
decision!

CloseTrans()!

ABORT
decision!

Nikita Borisov - UIUC 17

Lock Hierarchy for the Banking Example

Branch	

Account	
A	
 B	
 C	

• Deposit and withdrawal operations require locking!
 at the granularity of an account.!
• branchTotal operation acquires a read lock on all of!
 the accounts.!

Nikita Borisov - UIUC 18

Lock Hierarchy for a Diary

Week	

Monday	
 Tuesday	
 Wednesday	
 Thursday	
 Friday	

9:00–10:00	

time slots	

10:00–11:00	
11:00–12:00	
12:00–13:00	
13:00–14:00	
14:00–15:00	
15:00–16:00	

At each level, the setting of a parent lock has the same!
effect as setting all the equivalent child locks.!

Nikita Borisov - UIUC 19

♣ If objects are in a “part-of” hierarchy, a lock at a
higher node implicitly applies to children objects.

♣  Before a child node (in the object hierarchy) gets a
read/write lock, an intention lock (I-read/I-write) is
set for all ancestor nodes. The intention lock is
compatible with other intention locks but conflicts
with read/write locks according to the usual rules.
 Lock set Lock requested
 read write I-read I-write
 none OK OK OK OK
 read OK WAIT OK WAIT
 write WAIT WAIT WAIT WAIT
 I-read OK WAIT OK OK
 I-write WAIT WAIT OK OK

Hierarchical Locking

Nikita Borisov - UIUC 20

Summary

•  Distributed Transactions
–  More than one server process (each managing different set of

objects)
–  One server process marked out as coordinator
–  Atomic Commit: 2PC
–  Deadlock detection: Edge chasing
–  Hierarchical locking

Nikita Borisov - UIUC 21

