
 
Distributed Systems 

 
CS 425 / CSE 424 / ECE 428 

 
 

Transactions & Concurrency Control 
 
!

 

© 2010, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou 



Banking transaction for a customer (e.g., at 
ATM or browser) 

Transfer $100 from saving to checking account; 
Transfer $200 from money-market to checking account; 
Withdraw $400 from checking account. 

Transaction (invoked at client): 
 1. savings.deduct(100)    /* includes verification */ 
 2. checking.add(100)       /* depends on success of 1 */ 
 3. mnymkt.deduct(200)    /* includes verification */ 
 4. checking.add(200)       /* depends on success of 3 */ 
 5. checking.deduct(400)  /* includes verification */ 
 6. dispense(400) 
 7. commit                                      

Example Transaction Client! Server!
Transaction!



Transaction  
v  Sequence of operations that forms a single step, 

transforming the server data from one consistent 
state to another. 
q  All or nothing principle: a transaction either completes 

successfully, and the effects are recorded in the objects, or it has 
no effect at all. (even with multiple clients, or crashes) 

v A transactions is indivisible (atomic) from the point 
of view of other transactions 
v   No access to intermediate results/states 
v  Free from interference by other operations 

But…  
v Transactions could run concurrently, i.e., with 

multiple clients 
v  Transactions may be distributed, i.e., across 

multiple servers 



    Transaction: 
    1. savings.deduct(100)      
    2. checking.add(100)         
    3. mnymkt.deduct(200)      
    4. checking.add(200)         
    5. checking.deduct(400)    
    6. dispense(400) 
    7. commit                                      

 

Transaction Failure Modes  

A failure at these 
points means the 
customer loses 
money; we need 
to restore old state!

A failure at 
these points 
does not cause 
lost money, but 
old steps 
cannot be 
repeated!

This is the point of 
no return!

A failure after the 
commit  point 
(ATM crashes) 
needs corrective 
action; no undoing 
possible. !



Bank Server: Coordinator Interface 

v Transaction calls that can be made at a client, and return 
values from the server: 
openTransaction() -> trans;	


starts a new transaction and delivers a unique transaction identifier 
(TID) trans. This TID will be used in the other operations in the 
transaction.	


closeTransaction(trans) -> (commit, abort);	

ends a transaction: a commit return value indicates that the 
transaction has  committed; an abort return value indicates that it has 
aborted.	


abortTransaction(trans);	

aborts the transaction. 



Bank Server: Account, Branch interfaces 

deposit(amount)	

deposit amount in the account	


withdraw(amount)	

withdraw amount from the account	


getBalance() -> amount	

return the balance of the account	


setBalance(amount)	

set the balance of the account to amount	


create(name) -> account	

create a new account with a given name	


lookup(name) -> account 	

return a reference to the account with the given 
name	


 branchTotal() -> amount	

return the total of all the balances at the branch	


Operations of the Branch interface	


Operations of the Account interface	




Properties of Transactions (ACID)  
v  Atomicity: All or nothing   
v  Consistency: if the server starts in a consistent state, the 

transaction ends with the server in a consistent state.   
v  Isolation: Each transaction must be performed without 

interference from other transactions, i.e.,  the non-final effects 
of a transaction must not be visible to other transactions. 

v Durability: After a transaction has completed successfully, all 
its effects are saved in permanent storage. 

v Atomicity: store tentative object updates (for later undo/
redo) – many different ways of doing this (we’ll see them) 

v Durability: store entire results of transactions (all updated 
objects) to recover from permanent server crashes. 

 



Concurrent Transactions:Lost Update Problem 
v  One transaction causes loss of info. for another:  
     consider three account objects 

 Transaction T1  Transaction T2  
balance = b.getBalance()   

          balance = b.getBalance() 
          b.setBalance(balance*1.1) 

b.setBalance = (balance*1.1) 
a.withdraw(balance* 0.1) 
            c.withdraw(balance*0.1) 

 T1/T2’s update on the shared object, “b”, is lost 

100! 200! 300!a:! b:! c:!

280!c:!

80!a:!

220!b:!

220!b:!



Conc. Trans.: Inconsistent Retrieval Prob. 
v  Partial, incomplete results of one transaction are 
retrieved by another transaction. 
  

 Transaction T1  Transaction T2  
a.withdraw(100)   

           total = a.getBalance() 
           total = total + b.getBalance 

b.deposit(100)             
     total = total + c.getBalance 
             
 T1’s partial result is used by T2, giving the wrong 
result 

100! 200!

0.00!

a:! b:!

 00!a:!

500!

200!

300!c:!

total!

300!b:!



v  An interleaving of the operations of 2 or more transactions is 
said to be serially equivalent if the combined effect is the same 
as if these transactions had been performed sequentially (in 
some order).!
!
!

   Transaction T1  !             Transaction T2 !
balance = b.getBalance() !!
b.setBalance = (balance*1.1)!

! ! !       !   !
                                                           balance = b.getBalance()!

! ! ! !       !   b.setBalance(balance*1.1)!
a.withdraw(balance* 0.1)!
! ! ! !        !   c.withdraw(balance*0.1)!

! !
!

Concurrency Control: “Serial Equivalence” 

100! 200! 300!a:! b:! c:!

278!c:!
a:!

242!b:!

b:! 220!

80!

== T1 (complete) followed!
!by T2 (complete)!



q The effect of an operation refers to 
q The value of an object set by a write operation 
q The result returned by a read operation.  

q Two operations are said to be in conflict, if their combined 
effect depends on the order they are executed, e.g., read-
write, write-read, write-write (all on same variables). NOT 
read-read, not on different variables. 

q Two transactions are serially equivalent if and only if all 
pairs of conflicting operations (pair containing one operation 
from each transaction) are executed in the same order 
(transaction order) for all objects (data) they both access. 

 

q Why is the above result important? Because: Serial equivalence 
is the basis for concurrency control protocols for 
transactions. 

Conflicting Operations  



Read and Write Operation Conflict Rules 

Operations of different	

transactions	


Conflict	
 Reason	


read	
 read	
 No	
 Because the effect of a pair of 	
read	
 operations	

does not depend on the order in which they are	

executed	


read	
 write	
 Yes	
 Because the effect of a 	
read	
 and a 	
write	
 operation	

depends on the order of their execution	
  	


write	
 write	
 Yes	
 Because the effect of a pair of 	
write	
 operations	

depends on the order of their execution	
  	




v  An interleaving of the operations of 2 or more transactions is 
said to be serially equivalent if the combined effect is the same 
as if these transactions had been performed sequentially (in 
some order). 
 
 

   Transaction T1               Transaction T2  
balance = b.getBalance()   
b.setBalance = (balance*1.1) 

               
                                                           balance = b.getBalance() 

               b.setBalance(balance*1.1) 
a.withdraw(balance* 0.1) 
                c.withdraw(balance*0.1) 

   
 

Concurrency Control: “Serial Equivalence” 

100! 200! 300!a:! b:! c:!

278!c:!
a:!

242!b:!

b:! 220!

80!

== T1 (complete) followed!
!by T2 (complete)!

Pairs of Conflicting Operations!



Conflicting Operators Example  
Transaction T1      Transaction T2  
  x= a.read()   
  a.write(20)                     

     y = b.read() 
      b.write(30)           
  b.write(x) 
      z = a.read()   

          

  x= a.read()   
  a.write(20)                     

     z = a.read() 
  b.write(x)           
      y = b.read() 
      b.write(30)   

 Serially 
equivalent 
interleaving 
of 
operations!
(why?)!

Conflicting 
Ops.!

Non-
serially 
equivalent 
interleaving 
of 
operations!



Inconsistent Retrievals Problem 

Transaction 	
V	
:	
  	

a.withdraw(100)	

b.deposit(100)	


Transaction 	
W	
:	


aBranch.branchTotal()	


a.withdraw(100);	
 $100	

total = a.getBalance()	
 $100	

total = total+b.getBalance()	
 $300	

total = total+c.getBalance()	


b.deposit(100)	
 $300	


Both withdraw and deposit contain a write operation!



A Serially Equivalent Interleaving of V and W 

Transaction 	
V	
:	
  	

a.withdraw(100);	

b.deposit(100)	


Transaction 	
W	
:	

aBranch.branchTotal()	


a.withdraw(100);	
 $100	

	

	

b.deposit(100)	


	

	

	

$300	


total = a.getBalance()	
 $100	

	

total = total+b.getBalance()	


	

$400	


	

total = total+c.getBalance()	
...	




♣  Transaction operations can run concurrently, 
provided ACID is not violated, especially isolation 
principle 

♣  Concurrent operations must be consistent: 
♣   If trans.T has executed a read operation on object A,  a 

concurrent trans. U must not write to A until T commits or 
aborts. 

♣   If trans, T has executed a write operation on object A, a 
concurrent U must not read or write to A until T commits 
or aborts. 

♣ How to implement this? 
♣ First cut: locks 

Implementing Concurrent Transactions  



v  Exclusive Locks 

 Transaction T1        Transaction T2  
OpenTransaction() 
balance = b.getBalance()    OpenTransaction() 
       balance = b.getBalance() 

b.setBalance = (balance*1.1)    
a.withdraw(balance* 0.1)     
CloseTransaction() 

       b.setBalance = (balance*1.1) 
                
     c.withdraw(balance*0.1) 

      CloseTransaction() 

Example: Concurrent Transactions  

Lock 
B!

Lock 
A!

UnLock 
B!

UnLock 
A!

Lock 
C!

UnLock 
B!

UnLock 
C!

…

WAIT 
on B!

Lock 
B!

…



♣   Transaction managers (on server side) set locks on objects they 
need. A concurrent trans. cannot access locked objects.  

♣   Two phase locking: 
♣  In the first (growing) phase, new locks are only acquired, and in the 

second (shrinking) phase, locks are only released. 
♣  A transaction is not allowed acquire any new locks, once it has released 

any one lock. 

♣  Strict two phase locking: 
♣  Locking on an object is performed only before the first request to read/

write that object is about to be applied. 
♣  Unlocking is performed by the commit/abort operations of the 

transaction coordinator. 
♣ To prevent dirty reads and premature writes, a transaction waits for 

another to commit/abort 
♣  However, use of separate read and write locks leads to more 

concurrency than a single exclusive lock – Next slide 

Basic Locking 



 non-exclusive lock compatibility 
     Lock already   Lock requested 
        set   read   write 
  none      OK     OK 
  read      OK   WAIT 
  write    WAIT   WAIT 

♣ A read lock is promoted to a write lock when the 
transaction needs write access to the same object. 

♣  A read lock shared with other transactions’ read 
lock(s) cannot be promoted.  Transaction waits for 
other read locks to be released. 

♣ Cannot demote a write lock to read lock during 
transaction – violates the 2P principle 

2P Locking: Non-exclusive lock (per object) 



♣  When an operation accesses an object: 
v  if the object is not already locked, lock the object in the 

lowest appropriate mode & proceed. 
v  if the object has a conflicting lock by another transaction, 

wait until object has been unlocked. 
v  if the object has a non-conflicting lock by another 

transaction, share the lock & proceed. 
v  if the object has a lower lock by the same transaction, 

8  if the lock is not shared, promote the lock & proceed 
8  else, wait until all shared locks are released, then 

lock & proceed 

♣ When a transaction commits or aborts: 
8 release all locks that were set by the transaction 

Locking Procedure in 2P Locking 



v  Non-exclusive Locks 

 Transaction T1       Transaction T2  
 
OpenTransaction() 
balance = b.getBalance()          OpenTransaction() 
             balance = b.getBalance() 

           b.setBalance =balance*1.1  
 
Commit 
       

Example: Concurrent Transactions  

R-Lock 
B!

…

R-
Lock 

B!

Cannot Promote lock on B, Wait!

Promote lock on B!



v What happens in the example below? 

 Transaction T1       Transaction T2  
 
OpenTransaction() 
balance = b.getBalance()          OpenTransaction() 
             balance = b.getBalance() 

           b.setBalance =balance*1.1  
 
b.setBalance=balance*1.1 
       

Example: Concurrent Transactions  

R-Lock 
B!

…

R-
Lock 

B!

Cannot Promote lock on B, Wait!

Cannot Promote lock on B, Wait!

…



Deadlocks  
v Necessary conditions for deadlocks 

q  Non-shareable resources (locked objects)  
q  No preemption on locks 
q  Hold & Wait  &  Circular Wait     (Wait-for graph) 

T U!

Wait for!Held by!

Held by!Wait for!

A!

B! T
U!

Wait for!Held by!

Held by!Wait for!

A!

B!
V!

W

...!

...!

Wait for!

Wait for!Held by!

Held by!

T
W

U!
V! Complete!

this wait-for!
graph!



Naïve Deadlock Resolution Using Timeout 

Transaction T	
 Transaction U	
 	
 	

Operations	
 Locks	
 Operations	
 Locks	
 	
 	

a.deposit(100);	
 write lock 	
A	


b.deposit(200)	
 write lock 	
B	

b.withdraw(100)	


waits for 	
U	
’s	
 a.withdraw(200);	
 waits for T’s	

lock on 	
B	
 lock on 	
A	


                                  (timeout elapses)	

         	
T’s lock on 	
A	
 becomes vulnerable,	


                                 unlock 	
A	
, abort T	

a.withdraw(200);	
 write locks 	
A	


unlock 	
A	
, 	
B	


Disadvantages?!



Strategies to Fight Deadlock 

q Deadlocks can be resolved by lock timeout (costly 
and open to false positives) 

q Deadlock Prevention: violate one of the necessary 
conditions for deadlock (from previous slide), 
e.g., lock all objects at transaction start only; 
release all if any locking operation fails. 
Or, lock objects in a certain order (can force 
transactions to lock objects prematurely). 

q Deadlock Detection: deadlocks can be detected, 
e.g., by using a wait-for graph, & then resolved by 
aborting one of the transactions in the cycle.  



Concurrency control … summary so far … 

•  Increasing concurrency important because it 
improves throughput at server  

•  Applications are willing to tolerate temporary 
inconsistency and deadlocks in turn 

•  These inconsistencies and deadlocks need to be 
prevented or detected 

•  Driven and validated by actual application 
characteristics – mostly-read applications do not 
have too many conflicting operations anyway 


