CS425 [CSE424/ECE428 — Distributed Systems — Fall 2011

Remote Procedure Calls &
Distributed Objects

Material derived from slides by |. Gupta, M. Harandi,
J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya

2011-09-22 Nikita Borisov - UIUC

Search in Chord

At node n, send query for key k to largest successor/finger entry < k
if none exist, return successor(n) to requestor

Say m=7 0 \)\/L
15 £

—
All*arrows” are RPCs

=

YN

Who has bad.mp3?
(hashes to K42

\/’ File bad.mp3 with
key K42 stored her

Nikita Borisov - UIUC 2

Bank Database Example

How are “transactions” executed between
Bank Databac 2 client ATM and a bank server?

deposits of $10,000 into your bank account, each
from one ATM.

Both ATMs read initial amount of $1000 concurrently
from the bank server

Both ATMs add $10,000 to this amount (locally at the
ATM)

Both write the final amount to the server
What's wrong?

The ATMs need mutually exclusive access to
your account entry at the server

2011-09-22 Nikita Borisov - UIUC 3

Middleware Layers

Applications

RPCs and RMIs, e.g., CORBA

Request reply protocol

External data representation

Operating System

2011-09-22 Nikita Borisov - UIUC

Middleware
layers=
Provide
support to the
application\

Run at all servers
@user level

Local Objects

Within one process’s address space

consists of a set of data and a set of methods.
E.g., C++/Java object

an identifier via which objects can be accessed.
l.e., a pointer (C++)

Signatures of methods

Types of arguments, return values, exceptions
No implementation
E.g., hash table:

insert(key, value)

value = get(key)

remove(key)

2011-09-22 Nikita Borisov - UIUC 5

Remote Objects

May cross multiple process’s address spaces

method invocations between objects in different processes
(processes may be on the same or different host).

: procedure call between functions on
different processes in non-object-based system

objects that can receive remote invocations.

an identifier that can be used globally throughout a distributed
system to refer to a particular unique remote object.

Every remote object has a remote interface that specifies which
of its methods can be invoked remotely. E.g., CORBA interface
definition language (IDL).

2011-09-22 Nikita Borisov - UIUC 6

A Remote Object and Its Remote

Interface

remoteobject

Data
remote

interface

m1
{ m?2
m3

implementatiop__

of methods

Example Remote Object reference=(IP,port,objectnumber,signature,time)

2011-09-22 Nikita Borisov - UIUC 7

Remote and Local Method Invocations

remote

E; invocation

remote
Invocation

invocation
local

F

Local invocation=between objects on same process.
Has exactly once semantics

Remote invocation=between objects on different processes.
|deally also want exactly once semantics for remote invocations
But difficult (why?)

2011-09-22 Nikita Borisov - UIUC

Failure Modes of RMI/RPC

-<— Reply

— Request

— Request

2011-09-22

correct
function

crash
before

reply

crash
before
execution

Nikita Borisov - UIUC

— Request

lost
request

Channel
fails
during

reply

Client
machine
fails
before
receiving
reply

Invocation Semantics

J\ /E/ /

/ Fault toler% /fzeasures // Invocat.wn
semantics

N l/ /4

Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply
> No Not applicable Not applicable Maybe
o, Yes No ~ Re-execute procedure At-least-once
—>Yes Yes Retransmit old reply Af-most-once

2011-09-22 Nikita Borisov - UIUC 10

Proxy and Skeleton in Remote Method

Invocation

/

client iy remote
i skeleto ;
oplect A proxy for Request - & dispatcher object B
(for B's clas
Reply
Remote mmunication Communication Rem reference
reference module ule module module

2011-09-22 Nikita Borisov - UIUC 11

Proxy and Skeleton in Remote Method

Invocation

client
object A proxy for Request object B
(>
Reply
Remote Communication Communication Remote reference
reference module module module module

2011-09-22 Nikita Borisov - UIUC 12

Proxy

Is responsible for making RMI transparent to clients
by behaving like a local object to the invoker.
The proxy implements (Java term, not literally) the

methods in the interface of the remote object that it
represents. But,...

Instead of executing an invocation, the proxy
forwards it to a remote object

a request message
Target object reference
Method ID
Argument values

Sends request message
reply and returns to invoker

2011-09-22 Nikita Borisov - UIUC 13

Marshalling & Unmarshalling

External data representation: an agreed, platform-
independent, standard for the representation of data
structures and primitive values.

CORBA Common Data Representation (CDR)

Sun’s XDR

Google Protocol Buffers
: the act of taking a collection of data
items (platform dependent) and assembling them into
the external data representation (platform
independent).

: the process of disassembling data
that is in external data representation form, into a
locally interpretable form.

2011-09-22 Nikita Borisov - UIUC 14

Example: Google Protocol Buffers

message Test1 { 08 96 01
required int32 a = 1;

5

message Test2 § 12 07 74 6573 74 69 b6e 67
required string b = 2; t esti ng

5

2011-09-22 Nikita Borisov - UIUC 15

Remote Reference Module

Is responsible for translating between local and remote object
references and for creating remote object references.
Has a remote object table

An entry for each remote object held by any process. E.g., B at P2.

An entry for each local proxy. E.g., proxy-B at P1.
When a new remote object is seen by the remote reference
module, it creates a remote object reference and adds it to the
table.
When a remote object reference arrives in a request or reply
message, the remote reference module is asked for the
corresponding local object reference, which may refer to either a
proxy or to a remote object.
In case the remote object reference is not in the table, the RMI
software creates a new proxy and asks the remote reference
module to add it to the table.

2011-09-22 Nikita Borisov - UIUC 16

Proxy and Skeleton in Remote Method

Invocation

client
object A proxy for Request object B
(>
Reply
Remote Communication Communication Remote reference
reference module module module module

2011-09-22 Nikita Borisov - UIUC 17

What about Server Side?

Dispatcher and Skeleton

Each process has one dispatcher, and a skeleton for
each F cal object (actuaIIy, for the class).

The dispatcher receives all request messages from the
communication module.

For the request message, it uses the method id to select
the appropriate method in the appropriate skeleton,
passing on the request message.
Skeleton “implements” the methods in the remote
interface.

A skeleton method un-marshals the arguments in the
request message and invokes the corresponding method
in the remote object (the actual object).

It waits for the invocation to complete and marshals the
result, together with any exceptions, into a reply message.

2011-09-22 Nikita Borisov - UIUC 18

Summary of Remote Method Invocation

Client Proxy object is a
P"gﬂ container of Method
Object A] names.
Remote Reference
_ Vodule translates
—_ Comm. etween local and
Module te object
1 ces.
Serve y Dispatcher Sen
Proceéss Comm. request to Skeleto
_ T Skeleton unmarshals
Dispatcher _ parameters, sends it
Skeleton ObllaeCt the object, &
| forB's | shals the results
Class rn

2011-09-22 Nikita Borisov - UIUC 19

Generation of Proxies, Dispatchers and

Skeletons

Programmer only writes object implementations and
interfaces
Proxies Dispatchers and Skeletons generated
automatically from the specified interfaces
In CORBA, programmer specifies interfaces of remote
objects in CORBA IDL; then, the interface compiler
automatically generates code for proxies, dispatchers
and skeletons.
In Java RMI

The programmer defines the set of methods offered by a

remote object as a Java interface implemented in the
remote object.

The Java RMI compiler generates the proxy, dispatcher
and skeleton classes from the class of the remote object.

2011-09-22 Nikita Borisov - UIUC 20

Binder and Activator

: A separate service that maintains a table containing mappings
from textual names to remote object references. (sort of like DNS, but
for the specific middleware)
Used by servers to register their remote objects by name. Used by clients to
look them up. E.g., Java RMI Registry, CORBA Naming Svc.

Activation of remote objects
A remote object is active when it is available for invocation within a running
process.

A passive object consists of (i) implementation of its methods; and (ii) its state
in the marshalled form (a form in which it is shippable).

Activation creates a new instance of the class of a passive object and initializes
its instance variables. It is called on-demand.

An is responsible for
Registering passive objects at the binder
Starting named server processes and activating remote objects in them.
Keeping track of the locations of the servers for remote objects it has already activated

E.g., Activator=Inetd, Passive Object/service=FTP (invoked on demand)

2011-09-22 Nikita Borisov - UIUC 21

Etc.

= an object that survives
between simultaneous invocation of a process.
E.g., Persistent Java, PerDIS, Khazana.
If objects migrate, may not be a good idea to
have remote object reference=(IP,port,...)

= maps a remote object reference to
its likely current location

Allows the object to migrate from host to host,
without changing remote object reference

Example: Akamai is a location service for web objects.
It “migrates” web objects using the DNS location
service

2011-09-22 Nikita Borisov - UIUC 22

_ocal objects vs. Remote objects

RPCs and RMIs

RMI: invocation, proxies, skeletons,
dispatchers

Binder, Activator, Persistent Object, Location
Service

2011-09-22 Nikita Borisov - UIUC 23

